research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-(tert-butyl­amino)-4-(tert-butyl­imino)­naphthalen-1(4H)-one

CROSSMARK_Color_square_no_text.svg

aEscuela de Química, Universidad de Costa Rica, 2060 San Pedro, San José, Costa Rica, bCentro de Investigación en Productos Naturales (CIPRONA), Universidad de Costa, Rica, 2060 San José, Costa Rica, and cCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 2060 San José, Costa Rica
*Correspondence e-mail: guy.lamoureux@ucr.ac.cr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 21 May 2018; accepted 9 June 2018; online 15 June 2018)

The title compound, C18H24N2O, is the first example of a naphtho­quinone imine derivative isolated in the 4-imine/2-amine tautomeric form having bulky alkyl substituents at the N atoms. The mol­ecular conformation is stabilized by an intra­molecular hydrogen bond between the amine and a carbonyl group and by London attraction between the two tert-butyl groups. Only van der Waals inter­actions were identified in the crystal packing.

1. Chemical context

Naphtho­quinones (naphthalene­diones) form an important part of some pharmacophores in medicinal chemistry (López et al., 2015[López, J., de la Cruz, F., Alcaraz, Y., Delgado, F. & Vázquez, M. A. (2015). Med. Chem. Res. 24, 3599-3620.]). During an exploration of anti­malarial drugs, Fieser (Fieser & Fieser, 1935[Fieser, L. F. & Fieser, M. (1935). J. Am. Chem. Soc. 57, 491-494.]) indicated that amino­iminona­phtho­quinones, although difficult to form, had inter­esting medicinal properties. Bullock et al. (1969[Bullock, F. J., Tweedie, J. F. & McRitchie, D. D. (1969). J. Chem. Soc. C, pp. 1799-1803.]) provided more efficient ways to synthesize a series of these compounds and further investigated their properties as anti­protozoal agents (Bullock et al., 1970[Bullock, F. J., Tweedie, J. F., McRitchie, D. D. & Tucker, M. A. (1970). J. Med. Chem. 13, 550-552.]).

Naturally occurring compounds with a similar structure to these amino­iminona­phtho­quinones are known as hydrolytically stable pigments. Recently, several natural products containing a rigid amino­imino­quinone structure have been isolated and identified: macrophilone A (Zlotkowski et al., 2017[Zlotkowski, K., Hewitt, W. M., Yan, P., Bokesch, H. R., Peach, M. L., Nicklaus, M. C., O'Keefe, B. R., McMahon, J. B., Gustafson, K. R. & Schneekloth, J. S. Jr (2017). Org. Lett. 19, 1726-1729.]), makaluvamines (Radisky et al., 1993[Radisky, D. C., Radisky, E. S., Barrows, L. R., Copp, B. R., Kramer, R. A. & Ireland, C. M. (1993). J. Am. Chem. Soc. 115, 1632-1638.]), isobatzelline (Stierle & Faulkner, 1991[Stierle, D. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1131-1133.]), prianosin (Cheng et al., 1988[Cheng, J. F., Ohizumi, Y., Walchli, M. R., Nakamura, H., Hirata, Y., Sasaki, T. & Kobayashi, J. (1988). J. Org. Chem. 53, 4621-4624.]), epinardin (D'Ambrosio et al., 1996[D'Ambrosio, M., Guerriero, A., Chiasera, G., Pietra, F. & Tatò, M. (1996). Tetrahedron, 52, 8899-8906.]), and discorhabdin (Harayama & Kita, 2005[Harayama, Y. & Kita, Y. (2005). Curr. Org. Chem. 9, 1567-1588.]) families. These alkaloid secondary metabolites from marine organisms were found to possess cytotoxic anti­tumor properties. It has been reported that the amino­imino­quinone system may contribute to the cytotoxic activity (LaBarbera & Skibo, 2013[LaBarbera, D. V. & Skibo, E. B. (2013). J. Org. Chem. 78, 11887-11895.]).

[Scheme 2]

Although the 4-imine/2-amine structure was thought to be the most stable, there is evidence for multiple equilibria of these compounds in solution (see reaction scheme). For example, in the case of the methyl derivative (R = Me), NMR evidence at room temperature shows a mixture of tautomers (Bullock et al., 1969[Bullock, F. J., Tweedie, J. F. & McRitchie, D. D. (1969). J. Chem. Soc. C, pp. 1799-1803.]). This equilibrium, and in particular the possibility of tautomers, is important since the biological activity of these compounds depends on which tautomer is more stable (Hatfield et al., 2017[Hatfield, M. J., Chen, J., Fratt, E. M., Chi, L., Bollinger, J. C., Binder, R. J., Bowling, J., Hyatt, J. L., Scarborough, J., Jeffries, C. & Potter, P. M. (2017). J. Med. Chem. 60, 1568-1579.]).

As part of our work on the synthesis and properties of naphtho­quinones (Lamoureux et al., 2008[Lamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022-1028.]), we isolated the title compound as a minor product and predicted that the 4-imine/2-amine tautomeric form would not form because of the presence of bulky R groups. Much to our surprise, (E)-2-(tert-butyl­amino)-4-(tert-butyl­imino)­naphthalen-1(4H)-one is the first compound isolated and structurally characterized of this type with a tertiary alkyl group.

[Scheme 1]

2. Structural commentary

In the mol­ecule of the title compound (Fig. 1[link]), the imine C=N bond length at the 4-position [C8—N19 = 1.291 (3) Å] is shorter than the enamine C—N bond length at the 2-position [C10—N20 = 1.353 (3) Å], reflecting the greater double-bond character. The distance between the enamine N-atom and the t-butyl C-atom [N20—C11 = 1.476 (3) Å] is slightly shorter than the corresponding bond involving the imino group [N19—C15 = 1.485 (3) Å], possibly as a result of steric compression at the imine. However, the bond angles around the two nitro­gen atoms [C8—N19—C15 = 124.1 (2)°; C10—N20—C11 = 129.2 (2)°] are similar because of the delocalization of π electrons between the two nitro­gen atoms. This system can be considered to be a type of vinyl­ogous amidine (Shriner & Neumann, 1944[Shriner, R. L. & Neumann, F. W. (1944). Chem. Rev. 35, 351-425.]), both nitro­gen atoms having a trigonal–planar geometry. The fused imino­quinone ring adopts a flattened envelope conformation, with the flap atom C8 displaced by 0.112 (2) Å from the mean plane through C1/C2/C7/C9/C10, and with the C7—C8—C9 angle of 116.9 (2)° showing the largest deviation from the ideal value of 120°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as a dotted line.

The title compound possesses an intra­molecular hydrogen bond between the imine N—H and carbonyl groups (Table 1[link]), forming a ring with S(5) graph-set motif. The distance between the donor H atom and the acceptor carbonyl oxygen atom of 2.20 Å is shorter than expected as a result of the bulkiness of the tert-butyl group (vide infra). These tert-butyl groups also shield the nitro­gen atoms and provide a hydro­phobic environment on the side of the naphthalen-1-one ring system. The shortest C⋯C separations between carbon atoms of the tert-butyl groups are in the range 4.228 (4)–4.825 (4) Å, bringing them within distance of London attraction (Wagner & Schreiner, 2015[Wagner, J. P. & Schreiner, P. R. (2015). Angew. Chem. Int. Ed. 54, 12274-12296.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N20—H20⋯O21 0.88 2.20 2.629 (3) 109

3. Supra­molecular features

In the crystal structure of the title compound (Fig. 2[link]), the tert-butyl groups are oriented toward the centre of the unit cell. There are no inter­molecular hydrogen bonds, as seen in a similar structure with n-butyl groups (see below); the tert-butyl groups are shielding the nitro­gen atoms and preventing close approach of the supra­molecular donors and acceptors. There are no ππ stacking inter­actions present, the aromatic rings being separated by more than 6 Å.

[Figure 2]
Figure 2
Unit-cell contents of the title compound. Intra­molecular hydrogen bonds are shown in turquoise.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the substructure 2-(alkyl­amino)-4-(alkyl­imino)­naphthalen-1(4H)-one yielded three hits. Two of the structures, ESOFID (Schweinfurth et al., 2016[Schweinfurth, D., Mazzolini, M., Neshchadin, D., Hoyer, C., Geier, R., Gatterer, K., Trapp, N., Gescheidt, G. & Diederich, F. (2016). Chem. Eur. J. 22, 7152-7157.]) and UDAZEF (Singh et al., 2007[Singh, M. W., Karmakar, A., Barooah, N. & Baruah, J. B. (2007). Beilstein J. Org. Chem. 3, No. 10.]) have aromatic amines (aniline or substituted aniline) as the amine moiety. Only one structure, UDAZIJ (Singh et al., 2007[Singh, M. W., Karmakar, A., Barooah, N. & Baruah, J. B. (2007). Beilstein J. Org. Chem. 3, No. 10.]), has an aliphatic primary amine (n-butyl­amine) at positions 2 and 4. The structure of UDAZIJ is noteworthy because the intra­molecular N—H⋯O separation of 2.34 Å is much longer than that observed in the title compound, and because in the crystal lattice a dimeric assembly forms, held together by pairs of inter­molecular hydrogen-bonding inter­actions between the N—H and carbonyl groups of centrosymmetrically -related mol­ecules.

5. Synthesis and crystallization

The synthesis of the title compound was based on a new procedure (complete publication in progress). 192 mg (1.00 mmol) of 4-chloro­naphthalene-1,2-dione and 211 µL (2.00 mmol, 2 equiv.) of tert-butyl­amine were dissolved in tert-amyl alcohol (3.0 mL). This solution was stirred at 383 K under a nitro­gen atmosphere for 2 h. After being allowed to cool to room temperature, the green–brownish solution (originally yellow) was diluted with saline water (30 mL) and extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried over Na2SO4, filtered, and then concentrated under reduced pressure. The crude brown-dark solid material (249 mg) was separated by silica gel column chromatography using ethyl acetate as eluent to obtain the title compound as secondary product in the form of a dark-brown oily solid (119 mg). The compound was further purified by column chromatography over silica gel with gradient solvent elution [100% di­chloro­methane (CH2Cl2) and then 100% methyl tert-butyl ether (C5H12O)], and the fractions were dried under vacuum to yield 14 mg of the pure product (5% yield) as a yellow oily solid. Part of the purified product was redissolved in methanol with a few drops of water and placed at room temperature for slow evaporation. After several days, yellow crystal plates suitable for X-ray analysis were obtained. M.p. 377–388 K using a Fisher–Johns melting-point apparatus with calibrated thermometer. 1H NMR (600 MHz, CDCl3) δ 8.46–8.48 (dd, J = 7.8, 1.3 Hz, 1 H), 8.09–8.12 (dd, J = 7.8, 1.3 Hz, 1 H), 7.61–7.64 (td, J = 7.8, 1.3 Hz, 1 H), 7.48–7.52 (td, J = 7.8, 1.2 Hz, 1 H), 6.36 (s, 1 H), 5.53 (br s, 1 H), 1.56 (s, 9 H), 1.47 (s, 9 H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms are placed in calculated positions with N—H = 0.88 Å, C—H = 0.95–0.98 Å, and with U iso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C18H24N2O
Mr 284.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.2792 (18), 9.8936 (13), 11.4978 (13)
β (°) 97.539 (4)
V3) 1610.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.50 × 0.50 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.688, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 42010, 3732, 1927
Rint 0.213
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.143, 1.01
No. of reflections 3732
No. of parameters 196
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.29
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

(E)-2-(tert-Butylamino)-4-(tert-butylimino)naphthalen-1(4H)-one top
Crystal data top
C18H24N2OF(000) = 616
Mr = 284.39Dx = 1.173 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.2792 (18) ÅCell parameters from 68 reflections
b = 9.8936 (13) Åθ = 8.7–51.9°
c = 11.4978 (13) ŵ = 0.07 mm1
β = 97.539 (4)°T = 100 K
V = 1610.3 (3) Å3Plate, clear light yellow
Z = 40.50 × 0.50 × 0.10 mm
Data collection top
Bruker D8 Venture
diffractometer
3732 independent reflections
Radiation source: Incoatec Microsource1927 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.213
Detector resolution: 10.4167 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1212
Tmin = 0.688, Tmax = 0.746l = 1414
42010 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.5846P]
where P = (Fo2 + 2Fc2)/3
3732 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O210.96284 (12)0.43511 (18)0.34929 (16)0.0228 (5)
N190.59245 (14)0.4688 (2)0.17726 (17)0.0128 (5)
N200.87654 (14)0.6571 (2)0.40230 (18)0.0158 (5)
H200.93460.63150.42790.019*
C10.88028 (17)0.4461 (3)0.3057 (2)0.0143 (6)
C20.83366 (17)0.3446 (2)0.2234 (2)0.0127 (6)
C30.88527 (18)0.2349 (3)0.1908 (2)0.0166 (6)
H30.94940.22420.2240.02*
C40.84444 (18)0.1415 (3)0.1110 (2)0.0198 (7)
H40.87990.06640.08950.024*
C50.75077 (18)0.1583 (3)0.0622 (2)0.0189 (6)
H50.72260.09530.00580.023*
C60.69833 (18)0.2659 (3)0.0950 (2)0.0166 (6)
H60.63420.27550.06170.02*
C70.73876 (17)0.3605 (2)0.1764 (2)0.0116 (6)
C80.68184 (17)0.4750 (2)0.2136 (2)0.0114 (6)
C90.73246 (17)0.5786 (2)0.2858 (2)0.0126 (6)
H90.69930.65820.3020.015*
C100.82484 (16)0.5677 (2)0.3316 (2)0.0116 (6)
C110.84947 (17)0.7914 (3)0.4426 (2)0.0152 (6)
C120.93401 (19)0.8415 (3)0.5258 (3)0.0283 (7)
H12A0.98990.84410.48450.042*
H12B0.94570.78010.5930.042*
H12C0.9210.93240.55330.042*
C130.83000 (19)0.8877 (3)0.3390 (2)0.0227 (7)
H13A0.88650.89490.29930.034*
H13B0.81370.97710.36710.034*
H13C0.77730.85310.28390.034*
C140.76476 (18)0.7821 (3)0.5099 (2)0.0232 (7)
H14A0.70870.75570.45620.035*
H14B0.75380.87030.54460.035*
H14C0.77720.71440.57220.035*
C150.52276 (17)0.5718 (3)0.2041 (2)0.0142 (6)
C160.52078 (18)0.5907 (3)0.3365 (2)0.0197 (6)
H16A0.46760.64920.34910.03*
H16B0.580.63260.37170.03*
H16C0.51350.50260.37310.03*
C170.53815 (18)0.7053 (3)0.1418 (2)0.0189 (6)
H17A0.53720.68870.05760.028*
H17B0.59940.74370.1740.028*
H17C0.48770.76890.15390.028*
C180.42656 (17)0.5160 (3)0.1510 (2)0.0187 (6)
H18A0.42510.50670.06590.028*
H18B0.37660.57830.16770.028*
H18C0.41640.42740.18540.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O210.0141 (11)0.0190 (11)0.0329 (12)0.0019 (8)0.0057 (9)0.0047 (9)
N190.0124 (12)0.0116 (11)0.0140 (12)0.0017 (9)0.0003 (9)0.0013 (10)
N200.0111 (12)0.0129 (12)0.0215 (13)0.0013 (9)0.0049 (10)0.0031 (10)
C10.0143 (15)0.0139 (15)0.0150 (14)0.0006 (11)0.0027 (12)0.0023 (12)
C20.0155 (14)0.0113 (14)0.0118 (14)0.0002 (12)0.0036 (11)0.0007 (11)
C30.0131 (14)0.0200 (15)0.0165 (15)0.0021 (12)0.0012 (11)0.0025 (13)
C40.0247 (16)0.0149 (15)0.0204 (15)0.0039 (12)0.0052 (13)0.0018 (12)
C50.0209 (16)0.0197 (16)0.0163 (15)0.0018 (13)0.0036 (12)0.0043 (12)
C60.0151 (14)0.0183 (15)0.0168 (15)0.0018 (12)0.0029 (11)0.0007 (13)
C70.0157 (14)0.0085 (14)0.0108 (14)0.0026 (11)0.0024 (11)0.0036 (11)
C80.0130 (14)0.0102 (14)0.0112 (14)0.0002 (11)0.0029 (11)0.0045 (11)
C90.0148 (14)0.0096 (13)0.0138 (14)0.0015 (11)0.0034 (11)0.0013 (11)
C100.0123 (14)0.0119 (14)0.0106 (13)0.0013 (11)0.0017 (11)0.0039 (11)
C110.0158 (14)0.0133 (14)0.0154 (15)0.0005 (12)0.0025 (11)0.0036 (11)
C120.0288 (18)0.0173 (16)0.0353 (18)0.0003 (13)0.0085 (14)0.0080 (14)
C130.0268 (16)0.0162 (15)0.0248 (16)0.0000 (13)0.0025 (13)0.0016 (13)
C140.0277 (17)0.0252 (16)0.0169 (15)0.0006 (14)0.0033 (12)0.0065 (13)
C150.0110 (13)0.0149 (14)0.0166 (14)0.0010 (11)0.0014 (11)0.0029 (12)
C160.0134 (14)0.0232 (16)0.0227 (16)0.0018 (12)0.0032 (12)0.0034 (13)
C170.0166 (15)0.0151 (15)0.0241 (15)0.0033 (12)0.0005 (12)0.0019 (13)
C180.0133 (14)0.0191 (15)0.0228 (16)0.0015 (12)0.0013 (12)0.0016 (13)
Geometric parameters (Å, º) top
O21—C11.224 (3)C11—C131.522 (4)
N19—C81.291 (3)C11—C141.522 (4)
N19—C151.485 (3)C12—H12A0.98
N20—C101.353 (3)C12—H12B0.98
N20—C111.476 (3)C12—H12C0.98
N20—H200.88C13—H13A0.98
C1—C21.477 (3)C13—H13B0.98
C1—C101.491 (3)C13—H13C0.98
C2—C31.391 (3)C14—H14A0.98
C2—C71.400 (3)C14—H14B0.98
C3—C41.376 (3)C14—H14C0.98
C3—H30.95C15—C181.531 (3)
C4—C51.391 (3)C15—C171.533 (3)
C4—H40.95C15—C161.537 (3)
C5—C61.382 (3)C16—H16A0.98
C5—H50.95C16—H16B0.98
C6—C71.394 (3)C16—H16C0.98
C6—H60.95C17—H17A0.98
C7—C81.489 (3)C17—H17B0.98
C8—C91.451 (3)C17—H17C0.98
C9—C101.359 (3)C18—H18A0.98
C9—H90.95C18—H18B0.98
C11—C121.521 (3)C18—H18C0.98
C8—N19—C15124.1 (2)C11—C12—H12B109.5
C10—N20—C11129.2 (2)H12A—C12—H12B109.5
C10—N20—H20115.4C11—C12—H12C109.5
C11—N20—H20115.4H12A—C12—H12C109.5
O21—C1—C2122.1 (2)H12B—C12—H12C109.5
O21—C1—C10119.9 (2)C11—C13—H13A109.5
C2—C1—C10118.0 (2)C11—C13—H13B109.5
C3—C2—C7120.2 (2)H13A—C13—H13B109.5
C3—C2—C1119.5 (2)C11—C13—H13C109.5
C7—C2—C1120.2 (2)H13A—C13—H13C109.5
C4—C3—C2120.7 (2)H13B—C13—H13C109.5
C4—C3—H3119.7C11—C14—H14A109.5
C2—C3—H3119.7C11—C14—H14B109.5
C3—C4—C5119.3 (2)H14A—C14—H14B109.5
C3—C4—H4120.3C11—C14—H14C109.5
C5—C4—H4120.3H14A—C14—H14C109.5
C6—C5—C4120.6 (3)H14B—C14—H14C109.5
C6—C5—H5119.7N19—C15—C18105.09 (19)
C4—C5—H5119.7N19—C15—C17110.7 (2)
C5—C6—C7120.6 (2)C18—C15—C17107.5 (2)
C5—C6—H6119.7N19—C15—C16112.9 (2)
C7—C6—H6119.7C18—C15—C16107.9 (2)
C6—C7—C2118.6 (2)C17—C15—C16112.3 (2)
C6—C7—C8120.6 (2)C15—C16—H16A109.5
C2—C7—C8120.8 (2)C15—C16—H16B109.5
N19—C8—C9128.0 (2)H16A—C16—H16B109.5
N19—C8—C7115.1 (2)C15—C16—H16C109.5
C9—C8—C7116.9 (2)H16A—C16—H16C109.5
C10—C9—C8123.4 (2)H16B—C16—H16C109.5
C10—C9—H9118.3C15—C17—H17A109.5
C8—C9—H9118.3C15—C17—H17B109.5
N20—C10—C9127.3 (2)H17A—C17—H17B109.5
N20—C10—C1112.7 (2)C15—C17—H17C109.5
C9—C10—C1120.0 (2)H17A—C17—H17C109.5
N20—C11—C12105.8 (2)H17B—C17—H17C109.5
N20—C11—C13110.3 (2)C15—C18—H18A109.5
C12—C11—C13109.7 (2)C15—C18—H18B109.5
N20—C11—C14111.3 (2)H18A—C18—H18B109.5
C12—C11—C14108.5 (2)C15—C18—H18C109.5
C13—C11—C14111.1 (2)H18A—C18—H18C109.5
C11—C12—H12A109.5H18B—C18—H18C109.5
O21—C1—C2—C32.0 (4)C6—C7—C8—C9171.7 (2)
C10—C1—C2—C3175.5 (2)C2—C7—C8—C99.0 (3)
O21—C1—C2—C7179.4 (2)N19—C8—C9—C10171.5 (2)
C10—C1—C2—C73.1 (3)C7—C8—C9—C108.2 (3)
C7—C2—C3—C40.9 (4)C11—N20—C10—C94.0 (4)
C1—C2—C3—C4177.7 (2)C11—N20—C10—C1176.4 (2)
C2—C3—C4—C50.4 (4)C8—C9—C10—N20177.9 (2)
C3—C4—C5—C61.3 (4)C8—C9—C10—C11.7 (4)
C4—C5—C6—C70.9 (4)O21—C1—C10—N201.4 (3)
C5—C6—C7—C20.5 (4)C2—C1—C10—N20176.2 (2)
C5—C6—C7—C8178.8 (2)O21—C1—C10—C9178.3 (2)
C3—C2—C7—C61.4 (4)C2—C1—C10—C94.1 (3)
C1—C2—C7—C6177.2 (2)C10—N20—C11—C12176.7 (2)
C3—C2—C7—C8177.9 (2)C10—N20—C11—C1364.8 (3)
C1—C2—C7—C83.5 (3)C10—N20—C11—C1459.0 (3)
C15—N19—C8—C90.2 (4)C8—N19—C15—C18175.8 (2)
C15—N19—C8—C7179.9 (2)C8—N19—C15—C1768.5 (3)
C6—C7—C8—N198.6 (3)C8—N19—C15—C1658.5 (3)
C2—C7—C8—N19170.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20···O210.882.202.629 (3)109
 

Funding information

The Centro de Investigaciones en Productos Naturales (CIPRONA), the Centro de Electroquímica y Energía Química (CELEQ) and the Escuela de Química, Universidad de Costa Rica (UCR) provided support.

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBullock, F. J., Tweedie, J. F. & McRitchie, D. D. (1969). J. Chem. Soc. C, pp. 1799–1803.  Google Scholar
First citationBullock, F. J., Tweedie, J. F., McRitchie, D. D. & Tucker, M. A. (1970). J. Med. Chem. 13, 550–552.  CrossRef Web of Science Google Scholar
First citationCheng, J. F., Ohizumi, Y., Walchli, M. R., Nakamura, H., Hirata, Y., Sasaki, T. & Kobayashi, J. (1988). J. Org. Chem. 53, 4621–4624.  CrossRef Web of Science Google Scholar
First citationD'Ambrosio, M., Guerriero, A., Chiasera, G., Pietra, F. & Tatò, M. (1996). Tetrahedron, 52, 8899–8906.  Google Scholar
First citationFieser, L. F. & Fieser, M. (1935). J. Am. Chem. Soc. 57, 491–494.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarayama, Y. & Kita, Y. (2005). Curr. Org. Chem. 9, 1567–1588.  Web of Science CrossRef Google Scholar
First citationHatfield, M. J., Chen, J., Fratt, E. M., Chi, L., Bollinger, J. C., Binder, R. J., Bowling, J., Hyatt, J. L., Scarborough, J., Jeffries, C. & Potter, P. M. (2017). J. Med. Chem. 60, 1568–1579.  Web of Science CrossRef Google Scholar
First citationLaBarbera, D. V. & Skibo, E. B. (2013). J. Org. Chem. 78, 11887–11895.  Web of Science CrossRef Google Scholar
First citationLamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022–1028.  Web of Science CrossRef Google Scholar
First citationLópez, J., de la Cruz, F., Alcaraz, Y., Delgado, F. & Vázquez, M. A. (2015). Med. Chem. Res. 24, 3599–3620.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRadisky, D. C., Radisky, E. S., Barrows, L. R., Copp, B. R., Kramer, R. A. & Ireland, C. M. (1993). J. Am. Chem. Soc. 115, 1632–1638.  CrossRef Web of Science Google Scholar
First citationSchweinfurth, D., Mazzolini, M., Neshchadin, D., Hoyer, C., Geier, R., Gatterer, K., Trapp, N., Gescheidt, G. & Diederich, F. (2016). Chem. Eur. J. 22, 7152–7157.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShriner, R. L. & Neumann, F. W. (1944). Chem. Rev. 35, 351–425.  CrossRef Google Scholar
First citationSingh, M. W., Karmakar, A., Barooah, N. & Baruah, J. B. (2007). Beilstein J. Org. Chem. 3, No. 10.  Google Scholar
First citationStierle, D. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1131–1133.  CrossRef Web of Science Google Scholar
First citationWagner, J. P. & Schreiner, P. R. (2015). Angew. Chem. Int. Ed. 54, 12274–12296.  Web of Science CrossRef CAS Google Scholar
First citationZlotkowski, K., Hewitt, W. M., Yan, P., Bokesch, H. R., Peach, M. L., Nicklaus, M. C., O'Keefe, B. R., McMahon, J. B., Gustafson, K. R. & Schneekloth, J. S. Jr (2017). Org. Lett. 19, 1726–1729.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds