research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(tri­phenyl­phosphoranyl­­idene)-2,5-di­hydro­furan-2,5-dione tetra­hydro­furan monosolvate

CROSSMARK_Color_square_no_text.svg

aArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation, bDepartment of Chemistry, Kazan State University, Kremlevskaya St. 18, 420008, Kazan, Russian Federation, and cUniversity of Leipzig, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, Leipzig, Germany
*Correspondence e-mail: Almaz_zagidullin@mail.ru

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 8 May 2018; accepted 20 August 2018; online 24 August 2018)

The title pseudo-polymorph of 3-(tri­phenyl­phospho­ranyl­idene)-2,5-di­hydro­furan-2,5-dione crystallizes with a tetra­hydro­furan solvent mol­ecule, viz. C22H17O3P·C4H8O. The succinic anhydride ring is approximately planar (r.m.s. deviation = 0.032 Å). The tetra­hydro­furan mol­ecule is disordered over two orientations about a pseudo-twofold axis with refined occupancy ratio 0.718 (4):0.282 (4). In the crystal, C—H⋯O hydrogen bonds link mol­ecules of the di­hydro­furan-2,5-dione derivative into chains parallel to the b axis and arranged into layers stacked along [100] alternating with hydrogen-bonded tetra­hydro­furan layers.

1. Chemical context

Pseudopolymorphs are solvated forms of a compound that have different crystal structures and/or differ in the nature of the included solvent (Kumar et al., 1999[Kumar, V. S. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069-1074.]). The investigation of this phenomenon plays an important role for both fundamental and applied reasons. Phospho­rus ylides are useful inter­mediates, which have been used in many reactions and are involved in the synthesis of organic compounds (Selva et al., 2014[Selva, M., Perosa, A. & Noè, M. (2014). Organophosphorus Chemistry, Vol. 43, pp. 85-116. UK: Royal Society of Chemistry.]; Kolodiazhnyi, 1999[Kolodiazhnyi, O. I. (1999). Organic Synthesis, pp. 478-494. Weinheim: Wiley-VCH.]; Balema et al., 2002[Balema, V. P., Wiench, J. W., Pruski, M. & Pecharsky, V. K. (2002). J. Am. Chem. Soc. 124, 6244-6245.]). In this paper, the structure of the pseudopolymorph of 3-(tri­phenyl­phospho­ranyl­idene)-2,5-di­hydro­furan-2,5-dione (Geoffroy et al., 1993[Geoffroy, M., Rao, G., Tancic, Z. & Bernardinelli, G. (1993). Faraday Trans. 89, 2391-2396.]), crystallized with a THF solvent mol­ecule, is described.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the succinic anhydride ring is almost planar (r.m.s. deviation = 0.032 Å), with the C4 methyl­enic carbon atom displaced by only 0.118 (2) Å out of the least-squares mean plane through atoms C1, C2, C3 and O1 [maximum deviation of 0.007 (2) Å for C2]. The phospho­rus atom deviates from the least-squares mean plane of the succinic anhydride ring by 0.1855 (4) Å. The arrangement of the phenyl rings is propeller-wise, which is common arrangement for Ph3P-X fragments. The THF solvent mol­ecule is disordered over two orientations related by a pseudo-twofold axis. As recently reported by Islamov et al. (2017[Islamov, D. R., Shtyrlin, V. G., Serov, N. Y., Fedyanin, I. V. & Lyssenko, K. A. (2017). Cryst. Growth Des. 17, 4703-4709.]), mol­ecules located in general positions rotate more easily than those located on symmetry elements, and the presence of disorder increases the number of minima on the profile of the rotational barrier, making the barrier even lower (Karlen et al., 2010[Karlen, S. D., Reyes, H., Taylor, R. E., Khan, S. I., Hawthorne, M. F. & Garcia-Garibay, M. A. (2010). Proc. Nat. Acad. Sci. USA, 107, 14973-14977.]). However, since the quality of the anisotropic displace­ment parameters of the THF atoms is low, an attempt to determine the height of the rotational barrier using TLS analysis (Dunitz et al., 1988[Dunitz, J., Schomaker, V. & Trueblood, K. N. (1988). J. Phys. Chem. 92, 856-867.]) was unsuccessful.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Only the major component of the disordered THF mol­ecule is shown.

3. Supra­molecular features

In the crystal, 3-(tri­phenyl­phospho­ranyl­idene)-2,5-di­hydro­furan-2,5-dione mol­ecules inter­act through C—H⋯O hydrogen bonds (Table 1[link]), forming chains running parallel to the b axis. Alternating layers of chains and THF mol­ecules are stacked parallel to the bc plane (Fig. 2[link]) and connected by C—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O4Fi 0.92 (2) 2.59 (2) 3.253 (8) 129.4 (18)
C22—H22⋯O2ii 0.95 (2) 2.55 (2) 3.386 (2) 148.2 (16)
C20—H20⋯O4 1.00 (3) 2.58 (2) 3.452 (4) 145.8 (19)
C21—H21⋯O4Fiii 0.94 (2) 2.43 (2) 3.283 (6) 151 (2)
Symmetry codes: (i) x-1, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 426 structures containing the Ph3P=C fragment. The distribution histogram of the P=C distance [with a mean value of 1.729 Å and a standard deviation of 0.030 Å] is shown in Fig. 3[link]. The P=C distance in the title compound is 1.717 (2) Å, which in good agreement with that of the di­chloro­methane pseudopolymorph [1.717 (6) Å; Geoffroy et al., 1993[Geoffroy, M., Rao, G., Tancic, Z. & Bernardinelli, G. (1993). Faraday Trans. 89, 2391-2396.]]. In spite of the differences in the crystal packing, the conformation of the mol­ecule is very similar to that of the CH2Cl2 solvate (r.m.s. deviation = 0.032 Å; Fig. 4[link]).

[Figure 3]
Figure 3
Distribution histogram of the P=C distance in Ph3P=C fragments.
[Figure 4]
Figure 4
Structure overlay of THF solvate (green) and CH2Cl2 solvate (blue; Geoffroy et al., 1993[Geoffroy, M., Rao, G., Tancic, Z. & Bernardinelli, G. (1993). Faraday Trans. 89, 2391-2396.]).

5. Synthesis and crystallization

To a stirred solution maleic anhydride (0.17 g, 1.72 mmol) in tetra­hydro­furan THF (5 mL) was added tri­phenyl­phosphine (0.45 g, 1.72 mmol) at room temperature. The reaction mixture was stirred at room temperature for 24 h, then the solution was filtered and concentrated under reduced pressure. The reaction mixture was allowed to cool in the freezer (243 K, three days) and yellowish crystals precipitated. The crystals were separated from solvent and dried to give 0.56 g (90%) of the title compound. 1H NMR (CDCl3, δ, ppm, J, Hz): 1.78 (m, CH2 from THF), 3.14 (s, 2H, CH2), 3.67 (m, OCH2 from THF), 7.44–7.72 (m, 15H, Ph). 31P{1H} NMR (CDCl3, δ, ppm, J, Hz): +13.6 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The THF mol­ecule is disordered over two sites with an occupancy ratio of 0.718 (4):0.282 (4). EADP and SAME restraints were used to model this disordered mol­ecule. The H atoms of the 3-(tri­phenyl­phosphor­anyl­idene) di­hydro­furan-2,5-dione mol­ecule were located in difference-Fourier maps and refined freely. The THF H atoms were placed geometrically and refined using a riding-model approximation with C—H = 0.99 Å, and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C22H17O3P·C4H8O
Mr 432.43
Crystal system, space group Monoclinic, P21/c
Temperature (K) 130
a, b, c (Å) 12.1287 (5), 10.5530 (4), 17.5838 (8)
β (°) 104.435 (4)
V3) 2179.57 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.20 × 0.15 × 0.05
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.995, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 30663, 7381, 5123
Rint 0.061
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.130, 1.03
No. of reflections 7381
No. of parameters 370
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.39
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3-(Triphenylphosphoranylidene)-2,5-dihydrofuran-2,5-dione tetrahydrofuran monosolvate top
Crystal data top
C22H17O3P·C4H8OF(000) = 912
Mr = 432.43Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1287 (5) ÅCell parameters from 5863 reflections
b = 10.5530 (4) Åθ = 3.0–32.6°
c = 17.5838 (8) ŵ = 0.16 mm1
β = 104.435 (4)°T = 130 K
V = 2179.57 (16) Å3Needles, pale yellow
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Agilent Xcalibur Sapphire3 CCD
diffractometer
5123 reflections with I > 2σ(I)
Radiation source: sealed x-ray tubeRint = 0.061
ω scansθmax = 32.6°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1817
Tmin = 0.995, Tmax = 1k = 1515
30663 measured reflectionsl = 2626
7381 independent reflections
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0367P)2 + 1.6405P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7381 reflectionsΔρmax = 0.55 e Å3
370 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.35862 (4)0.49261 (4)0.15957 (2)0.01719 (10)
O10.20198 (11)0.76108 (12)0.01566 (8)0.0267 (3)
O20.35896 (12)0.79120 (13)0.11583 (8)0.0325 (3)
O30.05937 (12)0.67737 (15)0.07627 (8)0.0365 (4)
C10.26851 (14)0.58651 (16)0.09179 (10)0.0196 (3)
C20.28856 (15)0.71485 (17)0.08280 (10)0.0228 (4)
C30.13225 (15)0.66384 (19)0.01654 (11)0.0252 (4)
C40.16138 (15)0.54664 (18)0.03290 (11)0.0223 (3)
C50.32090 (14)0.33056 (16)0.13491 (9)0.0184 (3)
C60.39680 (15)0.24576 (18)0.11459 (10)0.0223 (4)
C70.36203 (17)0.12181 (18)0.09439 (11)0.0263 (4)
C80.25270 (17)0.08421 (18)0.09336 (11)0.0272 (4)
C90.17691 (17)0.16811 (18)0.11337 (11)0.0259 (4)
C100.21095 (15)0.29100 (17)0.13488 (11)0.0224 (3)
C110.34766 (14)0.51365 (17)0.25923 (9)0.0191 (3)
C120.30953 (17)0.62921 (19)0.28046 (11)0.0259 (4)
C130.30127 (18)0.6482 (2)0.35722 (12)0.0302 (4)
C140.33144 (17)0.5526 (2)0.41208 (11)0.0293 (4)
C150.36981 (17)0.4372 (2)0.39104 (11)0.0278 (4)
C160.37760 (15)0.41676 (18)0.31450 (11)0.0237 (4)
C170.50533 (14)0.51511 (16)0.15815 (10)0.0194 (3)
C180.53141 (16)0.56868 (18)0.09223 (11)0.0241 (4)
C190.64382 (17)0.5776 (2)0.08833 (12)0.0304 (4)
C200.73049 (16)0.5328 (2)0.14956 (12)0.0303 (4)
C210.70505 (16)0.4806 (2)0.21537 (11)0.0283 (4)
C220.59299 (15)0.47212 (19)0.22015 (11)0.0247 (4)
H4A0.1714 (16)0.476 (2)0.0002 (12)0.023 (5)*
H4B0.0986 (18)0.530 (2)0.0566 (12)0.028 (6)*
H60.4736 (18)0.273 (2)0.1138 (12)0.027 (5)*
H70.4134 (16)0.064 (2)0.0801 (12)0.021 (5)*
H80.2294 (18)0.001 (2)0.0810 (12)0.028 (6)*
H90.1041 (19)0.142 (2)0.1131 (13)0.033 (6)*
H100.1598 (18)0.349 (2)0.1476 (13)0.031 (6)*
H120.2872 (18)0.696 (2)0.2434 (13)0.033 (6)*
H130.273 (2)0.728 (2)0.3708 (14)0.044 (7)*
H140.3238 (19)0.566 (2)0.4650 (14)0.036 (6)*
H150.3900 (19)0.370 (2)0.4293 (14)0.035 (6)*
H160.4058 (18)0.332 (2)0.2995 (13)0.033 (6)*
H180.4709 (18)0.601 (2)0.0507 (13)0.032 (6)*
H190.6601 (19)0.614 (2)0.0407 (14)0.039 (6)*
H200.811 (2)0.539 (2)0.1460 (14)0.039 (6)*
H210.7635 (19)0.451 (2)0.2572 (14)0.037 (6)*
O40.9797 (3)0.6888 (3)0.1470 (2)0.0667 (10)0.718 (4)
C230.9886 (4)0.7506 (4)0.2223 (2)0.0567 (10)0.718 (4)
H23A0.93240.71450.24850.068*0.718 (4)
H23B1.06580.73850.25700.068*0.718 (4)
C240.9665 (11)0.8833 (6)0.2065 (6)0.0645 (14)0.718 (4)
H24A1.02630.93580.24080.077*0.718 (4)
H24B0.89170.90740.21530.077*0.718 (4)
C250.9668 (12)0.9006 (11)0.1196 (4)0.076 (2)0.718 (4)
H25A0.91440.96900.09460.092*0.718 (4)
H25B1.04420.91890.11360.092*0.718 (4)
C260.9267 (7)0.7765 (9)0.0877 (3)0.0600 (12)0.718 (4)
H26A0.84280.77090.07700.072*0.718 (4)
H26B0.94960.76010.03830.072*0.718 (4)
O4F1.0380 (5)0.9389 (7)0.1713 (4)0.057 (2)0.282 (4)
C23F0.965 (3)0.9030 (19)0.2222 (17)0.0645 (14)0.282 (4)
H23C0.89650.95820.21320.077*0.282 (4)
H23D1.00610.90770.27820.077*0.282 (4)
C24F0.9329 (11)0.7719 (12)0.1986 (6)0.0567 (10)0.282 (4)
H24C0.85750.75040.20720.068*0.282 (4)
H24D0.99020.71140.22810.068*0.282 (4)
C25F0.930 (2)0.771 (3)0.1100 (8)0.0600 (12)0.282 (4)
H25C0.97800.70240.09740.072*0.282 (4)
H25D0.85100.76050.07740.072*0.282 (4)
C26F0.975 (3)0.894 (3)0.0982 (12)0.076 (2)0.282 (4)
H26C1.02390.88770.06120.092*0.282 (4)
H26D0.91160.95340.07590.092*0.282 (4)
H220.5776 (17)0.437 (2)0.2658 (12)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01787 (19)0.0168 (2)0.01680 (18)0.00042 (16)0.00412 (14)0.00023 (17)
O10.0279 (7)0.0222 (7)0.0280 (7)0.0025 (5)0.0034 (5)0.0065 (5)
O20.0379 (8)0.0195 (7)0.0358 (8)0.0044 (6)0.0013 (6)0.0017 (6)
O30.0282 (7)0.0449 (9)0.0310 (7)0.0028 (6)0.0029 (6)0.0112 (7)
C10.0203 (8)0.0182 (8)0.0191 (8)0.0000 (6)0.0027 (6)0.0005 (6)
C20.0236 (8)0.0212 (9)0.0231 (8)0.0020 (7)0.0048 (7)0.0006 (7)
C30.0203 (8)0.0301 (10)0.0254 (9)0.0035 (7)0.0061 (7)0.0043 (8)
C40.0182 (8)0.0238 (9)0.0236 (8)0.0002 (7)0.0024 (6)0.0026 (7)
C50.0208 (8)0.0170 (8)0.0165 (7)0.0008 (6)0.0032 (6)0.0013 (6)
C60.0224 (8)0.0235 (9)0.0204 (8)0.0040 (7)0.0041 (7)0.0007 (7)
C70.0340 (10)0.0213 (9)0.0228 (9)0.0082 (8)0.0056 (7)0.0008 (7)
C80.0369 (10)0.0159 (8)0.0269 (9)0.0010 (8)0.0043 (8)0.0005 (7)
C90.0270 (9)0.0205 (9)0.0300 (9)0.0020 (7)0.0066 (7)0.0012 (7)
C100.0237 (8)0.0183 (8)0.0257 (9)0.0017 (7)0.0069 (7)0.0010 (7)
C110.0190 (7)0.0204 (8)0.0186 (7)0.0006 (6)0.0060 (6)0.0012 (6)
C120.0340 (10)0.0216 (9)0.0236 (9)0.0040 (8)0.0097 (7)0.0020 (7)
C130.0427 (11)0.0242 (10)0.0281 (9)0.0053 (8)0.0170 (8)0.0012 (8)
C140.0375 (11)0.0318 (10)0.0218 (9)0.0002 (8)0.0135 (8)0.0002 (8)
C150.0346 (10)0.0272 (10)0.0228 (9)0.0023 (8)0.0095 (8)0.0037 (8)
C160.0269 (9)0.0234 (9)0.0221 (8)0.0013 (7)0.0082 (7)0.0012 (7)
C170.0195 (7)0.0201 (8)0.0185 (7)0.0013 (6)0.0047 (6)0.0016 (6)
C180.0237 (8)0.0275 (9)0.0217 (8)0.0009 (7)0.0069 (7)0.0009 (7)
C190.0286 (10)0.0383 (12)0.0273 (10)0.0018 (8)0.0125 (8)0.0016 (9)
C200.0208 (9)0.0387 (12)0.0322 (10)0.0040 (8)0.0084 (7)0.0051 (9)
C210.0208 (8)0.0373 (11)0.0246 (9)0.0006 (8)0.0014 (7)0.0034 (8)
C220.0238 (8)0.0293 (10)0.0206 (8)0.0004 (7)0.0048 (7)0.0001 (7)
O40.079 (2)0.0495 (17)0.083 (2)0.0060 (15)0.0406 (17)0.0007 (16)
C230.059 (3)0.069 (3)0.039 (2)0.002 (2)0.0074 (19)0.0047 (19)
C240.061 (2)0.058 (3)0.079 (5)0.004 (3)0.027 (3)0.022 (3)
C250.050 (3)0.061 (3)0.113 (6)0.007 (2)0.012 (5)0.018 (4)
C260.0586 (19)0.092 (3)0.029 (3)0.0256 (19)0.011 (3)0.001 (3)
O4F0.051 (4)0.076 (5)0.037 (3)0.041 (3)0.004 (3)0.012 (3)
C23F0.061 (2)0.058 (3)0.079 (5)0.004 (3)0.027 (3)0.022 (3)
C24F0.059 (3)0.069 (3)0.039 (2)0.002 (2)0.0074 (19)0.0047 (19)
C25F0.0586 (19)0.092 (3)0.029 (3)0.0256 (19)0.011 (3)0.001 (3)
C26F0.050 (3)0.061 (3)0.113 (6)0.007 (2)0.012 (5)0.018 (4)
Geometric parameters (Å, º) top
P1—C11.7168 (17)C17—C221.395 (2)
P1—C51.7952 (18)C18—C191.385 (3)
P1—C171.8016 (17)C18—H180.96 (2)
P1—C111.8039 (17)C19—C201.387 (3)
O1—C31.360 (2)C19—H190.98 (2)
O1—C21.455 (2)C20—C211.384 (3)
O2—C21.212 (2)C20—H201.00 (2)
O3—C31.201 (2)C21—C221.385 (3)
C1—C21.392 (2)C21—H210.94 (2)
C1—C41.506 (2)C22—H220.95 (2)
C3—C41.502 (3)O4—C261.423 (8)
C4—H4A0.97 (2)O4—C231.455 (5)
C4—H4B0.97 (2)C23—C241.440 (9)
C5—C61.393 (2)C23—H23A0.9900
C5—C101.397 (2)C23—H23B0.9900
C6—C71.393 (3)C24—C251.540 (10)
C6—H60.98 (2)C24—H24A0.9900
C7—C81.380 (3)C24—H24B0.9900
C7—H70.95 (2)C25—C261.460 (7)
C8—C91.383 (3)C25—H25A0.9900
C8—H80.94 (2)C25—H25B0.9900
C9—C101.385 (3)C26—H26A0.9900
C9—H90.93 (2)C26—H26B0.9900
C10—H100.94 (2)O4F—C26F1.404 (19)
C11—C121.388 (3)O4F—C23F1.461 (17)
C11—C161.395 (2)C23F—C24F1.468 (15)
C12—C131.393 (3)C23F—H23C0.9900
C12—H120.95 (2)C23F—H23D0.9900
C13—C141.381 (3)C24F—C25F1.549 (14)
C13—H130.96 (3)C24F—H24C0.9900
C14—C151.386 (3)C24F—H24D0.9900
C14—H140.97 (2)C25F—C26F1.445 (15)
C15—C161.389 (3)C25F—H25C0.9900
C15—H150.97 (2)C25F—H25D0.9900
C16—H161.02 (2)C26F—H26C0.9900
C17—C181.395 (2)C26F—H26D0.9900
C1—P1—C5107.60 (8)C17—C18—H18119.1 (13)
C1—P1—C17111.98 (8)C18—C19—C20120.22 (18)
C5—P1—C17108.38 (8)C18—C19—H19118.5 (13)
C1—P1—C11114.52 (8)C20—C19—H19121.3 (13)
C5—P1—C11106.01 (8)C21—C20—C19120.07 (18)
C17—P1—C11108.03 (8)C21—C20—H20120.2 (14)
C3—O1—C2109.44 (14)C19—C20—H20119.7 (14)
C2—C1—C4109.82 (15)C20—C21—C22120.18 (18)
C2—C1—P1122.78 (13)C20—C21—H21120.4 (14)
C4—C1—P1127.38 (13)C22—C21—H21119.4 (14)
O2—C2—C1135.62 (17)C21—C22—C17119.98 (17)
O2—C2—O1116.47 (16)C21—C22—H22118.8 (12)
C1—C2—O1107.90 (15)C17—C22—H22121.3 (12)
O3—C3—O1121.34 (18)C26—O4—C23107.1 (4)
O3—C3—C4128.29 (19)C24—C23—O4107.0 (5)
O1—C3—C4110.37 (15)C24—C23—H23A110.3
C3—C4—C1101.89 (15)O4—C23—H23A110.3
C3—C4—H4A109.7 (12)C24—C23—H23B110.3
C1—C4—H4A114.2 (12)O4—C23—H23B110.3
C3—C4—H4B107.5 (13)H23A—C23—H23B108.6
C1—C4—H4B113.0 (12)C23—C24—C25105.1 (6)
H4A—C4—H4B110.0 (17)C23—C24—H24A110.7
C6—C5—C10119.98 (16)C25—C24—H24A110.7
C6—C5—P1121.94 (13)C23—C24—H24B110.7
C10—C5—P1118.06 (13)C25—C24—H24B110.7
C5—C6—C7119.43 (17)H24A—C24—H24B108.8
C5—C6—H6120.6 (13)C26—C25—C24101.1 (6)
C7—C6—H6120.0 (13)C26—C25—H25A111.6
C8—C7—C6120.15 (18)C24—C25—H25A111.6
C8—C7—H7120.1 (12)C26—C25—H25B111.6
C6—C7—H7119.7 (12)C24—C25—H25B111.6
C7—C8—C9120.65 (18)H25A—C25—H25B109.4
C7—C8—H8120.5 (13)O4—C26—C25104.8 (7)
C9—C8—H8118.8 (13)O4—C26—H26A110.8
C8—C9—C10119.81 (18)C25—C26—H26A110.8
C8—C9—H9120.0 (14)O4—C26—H26B110.8
C10—C9—H9120.2 (14)C25—C26—H26B110.8
C9—C10—C5119.96 (17)H26A—C26—H26B108.9
C9—C10—H10120.4 (13)C26F—O4F—C23F101.3 (16)
C5—C10—H10119.6 (13)O4F—C23F—C24F103.2 (12)
C12—C11—C16120.19 (16)O4F—C23F—H23C111.1
C12—C11—P1118.66 (14)C24F—C23F—H23C111.1
C16—C11—P1121.14 (13)O4F—C23F—H23D111.1
C11—C12—C13119.78 (18)C24F—C23F—H23D111.1
C11—C12—H12121.6 (14)H23C—C23F—H23D109.1
C13—C12—H12118.6 (14)C23F—C24F—C25F103.2 (14)
C14—C13—C12120.07 (18)C23F—C24F—H24C111.1
C14—C13—H13121.2 (15)C25F—C24F—H24C111.1
C12—C13—H13118.7 (15)C23F—C24F—H24D111.1
C13—C14—C15120.23 (18)C25F—C24F—H24D111.1
C13—C14—H14119.8 (14)H24C—C24F—H24D109.1
C15—C14—H14120.0 (14)C26F—C25F—C24F102.9 (14)
C14—C15—C16120.24 (18)C26F—C25F—H25C111.2
C14—C15—H15120.3 (14)C24F—C25F—H25C111.2
C16—C15—H15119.5 (14)C26F—C25F—H25D111.2
C15—C16—C11119.48 (17)C24F—C25F—H25D111.2
C15—C16—H16119.8 (13)H25C—C25F—H25D109.1
C11—C16—H16120.7 (13)O4F—C26F—C25F108.1 (17)
C18—C17—C22119.64 (16)O4F—C26F—H26C110.1
C18—C17—P1119.62 (13)C25F—C26F—H26C110.1
C22—C17—P1120.61 (13)O4F—C26F—H26D110.1
C19—C18—C17119.90 (17)C25F—C26F—H26D110.1
C19—C18—H18121.0 (13)H26C—C26F—H26D108.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O4Fi0.92 (2)2.59 (2)3.253 (8)129.4 (18)
C22—H22···O2ii0.95 (2)2.55 (2)3.386 (2)148.2 (16)
C20—H20···O41.00 (3)2.58 (2)3.452 (4)145.8 (19)
C21—H21···O4Fiii0.94 (2)2.43 (2)3.283 (6)151 (2)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBalema, V. P., Wiench, J. W., Pruski, M. & Pecharsky, V. K. (2002). J. Am. Chem. Soc. 124, 6244–6245.  CrossRef Google Scholar
First citationDunitz, J., Schomaker, V. & Trueblood, K. N. (1988). J. Phys. Chem. 92, 856–867.  CrossRef CAS Web of Science Google Scholar
First citationGeoffroy, M., Rao, G., Tancic, Z. & Bernardinelli, G. (1993). Faraday Trans. 89, 2391–2396.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIslamov, D. R., Shtyrlin, V. G., Serov, N. Y., Fedyanin, I. V. & Lyssenko, K. A. (2017). Cryst. Growth Des. 17, 4703–4709.  CrossRef Google Scholar
First citationKarlen, S. D., Reyes, H., Taylor, R. E., Khan, S. I., Hawthorne, M. F. & Garcia-Garibay, M. A. (2010). Proc. Nat. Acad. Sci. USA, 107, 14973–14977.  CrossRef Google Scholar
First citationKolodiazhnyi, O. I. (1999). Organic Synthesis, pp. 478–494. Weinheim: Wiley-VCH.  Google Scholar
First citationKumar, V. S. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069–1074.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSelva, M., Perosa, A. & Noè, M. (2014). Organophosphorus Chemistry, Vol. 43, pp. 85–116. UK: Royal Society of Chemistry.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds