research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two ansa-titanocene tri­fluoro­methane­sulfonate complexes bearing the Me2Si(C5Me4)2 ligand

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: torsten.beweries@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 9 November 2016; accepted 16 November 2016; online 22 November 2016)

The crystal structures of two ansa-titanocene tri­fluoro­methane­sulfonate complexes bearing the Me2Si(C5Me4)2 ligand are reported, namely [di­methylbis­(η5-tetra­methyl­cyclo­penta­dien­yl)silane](tri­fluoro­methane­sulfonato-κ2O,O′)titanium(III) toluene monosolvate, [Ti(CF3O3S)(C20H30Si)]·C7H8, 1, and chlorido­[di­methyl­bis­(η5-tetra­methyl­cyclo­penta­dien­yl)silane](tri­fluoro­methane­sulfonato-κO)titanium(IV), [Ti(CF3O3S)(C20H30Si)Cl], 2. Both complexes display a bent metallocene unit, the metal atom being coordinated in a distorted tetra­hedral geometry, with the tri­fluoro­methane­sulfonate anion acting as a bidentate or monodentate ligand in 1 and 2, respectively. In 1, weak ππ stacking inter­actions involving the toluene solvent mol­ecules [centroid-to-centroid distance = 3.9491 (11) Å] are observed.

1. Chemical context

Titanocene tri­fluoro­methane­sulfonate complexes have been investigated by our group as model complexes for overall water splitting (Kessler et al., 2011[Kessler, M., Hansen, S., Hollmann, D., Klahn, M., Beweries, T., Spannenberg, A., Brückner, A. & Rosenthal, U. (2011). Eur. J. Inorg. Chem. pp. 627-631.]; Hollmann et al., 2013[Hollmann, D., Grabow, K., Jiao, H., Kessler, M., Spannenberg, A., Beweries, T., Bentrup, U. & Brückner, A. (2013). Chem. Eur. J. 19, 13705-13713.]; Godemann et al., 2015[Godemann, C., Hollmann, D., Kessler, M., Jiao, H., Spannenberg, A., Brückner, A. & Beweries, T. (2015). J. Am. Chem. Soc. 137, 16187-16195.]). We have found that the nature of the cyclo­penta­dienyl ligands strongly influences the outcome of the reaction. In case of the unbridged TiIII complex Cp*2Ti(OTf) (A, Cp* = η5-penta­methyl­cyclo­penta­dien­yl), reaction with water gave di­hydrogen and the TiIV complex Cp*2Ti(OH)(OTf), which could not be reconverted photochemically into the TiIII starting material (Kessler et al., 2011[Kessler, M., Hansen, S., Hollmann, D., Klahn, M., Beweries, T., Spannenberg, A., Brückner, A. & Rosenthal, U. (2011). Eur. J. Inorg. Chem. pp. 627-631.]; Hollmann et al., 2013[Hollmann, D., Grabow, K., Jiao, H., Kessler, M., Spannenberg, A., Beweries, T., Bentrup, U. & Brückner, A. (2013). Chem. Eur. J. 19, 13705-13713.]). In contrast, reaction of the silanediyl-bridged complex Me4Si2(C5Me4)2Ti(OTf) (B) with water was found to yield the TiIII compound [Me4Si2(C5Me4)Ti(H2O)2](OTf), which could be oxidized with TEMPO to give a TiIV species [Me4Si2(C5Me4)2Ti(H2O)(OH)](OTf). Photolysis of the latter results in a photoreduction and elimination of the OH ligand to give a TiIII tri­fluoro­methane­sulfonate complex. Several cycles of this synthetic model scheme for water splitting can be passed (Godemann et al., 2015[Godemann, C., Hollmann, D., Kessler, M., Jiao, H., Spannenberg, A., Brückner, A. & Beweries, T. (2015). J. Am. Chem. Soc. 137, 16187-16195.]).

[Scheme 1]

Variation of the ansa-cyclo­penta­dienyl ligand, i.e. shortening of the bridging unit, should have an influence on the reactivity of the corresponding tri­fluoro­methane­sulfonate complexes. We therefore aimed at the synthesis of bridged tri­fluoro­methane­sulfonate complexes bearing the metallocene [Me2Si(C5Me4)Ti].

2. Structural commentary

Figs. 1[link] and 2[link] show displacement ellipsoid plots of [Me2Si(C5Me4)2Ti(OTf)]·C7H8 (1) and [Me2Si(C5Me4)2Ti(OTf)Cl] (2), respectively. Both metal complexes exhibit distorted tetra­hedral coordination geometries and show the typical bent metallocene moiety.

[Figure 1]
Figure 1
The structures of the molecular components of compound 1. Displacement ellipsoids correspond to the 30% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
The mol­ecular structure of complex 2. Displacement ellipsoids correspond to the 30% probability level. H atoms have been omitted for clarity.

Complex 1 crystallizes with one mol­ecule of toluene in the asymmetric unit. The crystal structure of 1 confirms the bidentate binding mode of the tri­fluoro­methane­sulfonate ligand, which is in contrast to other complexes bearing different metallocene units (Kessler et al., 2011[Kessler, M., Hansen, S., Hollmann, D., Klahn, M., Beweries, T., Spannenberg, A., Brückner, A. & Rosenthal, U. (2011). Eur. J. Inorg. Chem. pp. 627-631.]; Godemann et al., 2015[Godemann, C., Hollmann, D., Kessler, M., Jiao, H., Spannenberg, A., Brückner, A. & Beweries, T. (2015). J. Am. Chem. Soc. 137, 16187-16195.]).

However, this binding mode is known for group 4 complexes (Giannini et al., 1997[Giannini, L., Caselli, A., Solari, E., Floriani, C., Chiesi-Villa, A., Rizzoli, C., Re, N. & Sgamellotti, A. (1997). J. Am. Chem. Soc. 119, 9198-9210.]; Donkervoort et al., 1997[Donkervoort, J. G., Jastrzebski, J. T. B. H., Deelman, B.-J., Kooijman, H., Veldman, N., Spek, A. L. & van Koten, G. (1997). Organometallics, 16, 4174-4184.]; Basuli, Bailey et al., 2003[Basuli, F., Bailey, B. C., Tomaszewski, J., Huffman, J. C. & Mindiola, D. J. (2003). J. Am. Chem. Soc. 125, 6052-6053.]; Basuli, Huffman, & Mindiola, 2003[Basuli, F., Huffman, J. C. & Mindiola, D. J. (2003). Inorg. Chem. 42, 8003-8010.]; Basuli et al., 2004[Basuli, F., Kilgore, U. J., Brown, D., Huffman, J. C. & Mindiola, D. J. (2004). Organometallics, 23, 6166-6175.]). Metallocene compounds such as the lanthanide compounds [C5H3(SiMe3)2]2Nd(κO-OTf)(κ2O,O-OTf) (Hitchcock et al., 2006[Hitchcock, P. B., Hulkes, A. G., Lappert, M. F. & Protchenko, A. V. (2006). Inorg. Chim. Acta, 359, 2998-3006.]) and [C5H2(t-Bu)3]2Ce(κ2O,O-OTf) (Werkema et al., 2013[Werkema, E. L., Castro, L., Maron, L., Eisenstein, O. & Andersen, R. A. (2013). New J. Chem. 37, 132-142.]) have been reported as well. Compared to the above mentioned titanocene tri­fluoro­methane­sulfonate, which shows the tri­fluoro­methane­sulfonate ligand in κ1 coord­ination, the Ti—O bonds are significantly longer in the title compound 1, pointing towards a much weaker coordination of the ligand in a symmetrical arrangement [for comparison: A: 2.078 (1), B: 2.058 (2) Å].

Titanocene(IV) complexes with a tri­fluoro­methane­sulfonate ligand in a κ1-binding mode have been described by Beckhaus et al. (1994[Beckhaus, R., Sang, J., Oster, J. & Wagner, T. (1994). J. Organomet. Chem. 484, 179-190.]); Taw et al. (2003[Taw, F. L., Scott, B. L. & Kiplinger, J. L. (2003). J. Am. Chem. Soc. 125, 14712-14713.]); Deacon et al. (2006[Deacon, G. B., Junk, P. C., Ness, T. J., Schwering, R. & Meyer, G. (2006). J. Chem. Crystallogr. 36, 167-174.]); Kessler et al. (2011[Kessler, M., Hansen, S., Hollmann, D., Klahn, M., Beweries, T., Spannenberg, A., Brückner, A. & Rosenthal, U. (2011). Eur. J. Inorg. Chem. pp. 627-631.]) and Godemann et al. (2015[Godemann, C., Hollmann, D., Kessler, M., Jiao, H., Spannenberg, A., Brückner, A. & Beweries, T. (2015). J. Am. Chem. Soc. 137, 16187-16195.]). The crystal structure of complex 2 also shows the tri­fluoro­methane­sulfonate ligand in a κ1-binding mode with a Ti1—O1 distance of 2.0605 (11) Å, which is slightly shorter compared to the bis­(penta­methyl­cyclo­penta­dien­yl) compound Cp*2Ti(Cl)(OTf) [2.097 (4) Å; Beckhaus et al., 1994[Beckhaus, R., Sang, J., Oster, J. & Wagner, T. (1994). J. Organomet. Chem. 484, 179-190.]]. The value for the Ti1—Cl1 bond length [2.3255 (5) Å] is in the expected range for a TiIV–chloride bond and is the same as found for the above Cp* complex [2.328 (2) Å].

3. Supra­molecular features

For 1, weak ππ stacking inter­actions were observed between two neighbouring toluene solvent mol­ecules along the a axis [distance between ring centroids 3.9491 (11) Å and ring slippage of 1.985 Å].

4. Synthesis and crystallization

All operations were carried out under argon with standard Schlenk techniques or in a glovebox. The alkyne complex Me2Si(C5Me4)2Ti(η2-Me3SiC2SiMe3) was prepared according to a published procedure (Varga et al., 1997[Varga, V., Hiller, J., Gyepes, R., Polášek, M., Sedmera, P., Thewalt, U. & Mach, K. (1997). J. Organomet. Chem. 538, 63-74.]). Yb(OTf)3 was purchased from Sigma Aldrich and used as received. Toluene was purified with the Grubbs-type column system `Pure Solv MD-5' and dispensed into thick-walled glass Schlenk bombs equipped with Young-type Teflon valve stopcocks.

Synthesis of 1: Me2Si(C5Me4)2Ti(η2-Me3SiC2SiMe3) (0.450 g, 0.87 mmol) and Yb(OTf)3 (0.730 g, 1.17 mmol) were dissolved in 30 ml of toluene and heated at 333 K overnight, resulting in a colour change from dark yellow to green. All volatiles were removed in vacuo and the residue was again dissolved in toluene. The solution was filtered and the solvent was evaporated in vacuum to yield complex 1 as a dark-green powder. Single crystals suitable for an X-ray analysis were obtained from a saturated toluene solution at 195 K.

Synthesis of 2: In an experiment which aimed at the synthesis of the above TiIII tri­fluoro­methane­sulfonate complex 1, a batch of the alkyne complex Me2Si(C5Me4)2Ti(η2-Me3SiC2SiMe3) was used that contained significant amounts of the monochloride complex Me2Si(C5Me4)2TiCl, which was formed by incomplete reduction of the dichloride complex Me2Si(C5Me4)2TiCl2 during synthesis of the alkyne complex. Reaction of the monochloride complex with Yb(OTf)3 yields the ansa-titanocene(IV) chloride tri­fluoro­methane­sulfonate complex 2. Single crystals suitable for an X-ray analysis were obtained from a saturated toluene solution by slow cooling from 353 K to room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were placed geom­etrically and refined using a riding-atom approximation, with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Table 1
Experimental details

  1 2
Crystal data
Chemical formula [Ti(CF3O3S)(C20H30Si)]·C7H8 [Ti(CF3O3S)(C20H30Si)Cl]
Mr 587.63 530.95
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 150 150
a, b, c (Å) 8.9431 (2), 12.3682 (3), 13.8860 (3) 10.0958 (3), 15.8656 (5), 14.5544 (5)
α, β, γ (°) 66.795 (1), 85.501 (1), 86.367 (1) 90, 91.9841 (8), 90
V3) 1406.44 (6) 2329.87 (13)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.47 0.67
Crystal size (mm) 0.52 × 0.32 × 0.32 0.46 × 0.39 × 0.27
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.79, 0.86 0.78, 0.84
No. of measured, independent and observed [I > 2σ(I)] reflections 45127, 6782, 6191 34539, 5616, 5121
Rint 0.022 0.021
(sin θ/λ)max−1) 0.661 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.04 0.030, 0.085, 1.04
No. of reflections 6782 5616
No. of parameters 345 290
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.44 0.52, −0.43
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

(1) [Dimethylbis(η5-tetramethylcyclopentadienyl)silane](trifluoromethanesulfonato-κ2O,O')titanium(III) toluene monosolvate top
Crystal data top
[Ti(CF3O3S)(C20H30Si)]·C7H8Z = 2
Mr = 587.63F(000) = 618
Triclinic, P1Dx = 1.388 Mg m3
a = 8.9431 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.3682 (3) ÅCell parameters from 9883 reflections
c = 13.8860 (3) Åθ = 2.3–28.8°
α = 66.795 (1)°µ = 0.47 mm1
β = 85.501 (1)°T = 150 K
γ = 86.367 (1)°Prism, green
V = 1406.44 (6) Å30.52 × 0.32 × 0.32 mm
Data collection top
Bruker APEXII CCD
diffractometer
6782 independent reflections
Radiation source: fine-focus sealed tube6191 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.022
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1111
Tmin = 0.79, Tmax = 0.86k = 1616
45127 measured reflectionsl = 1718
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.821P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6782 reflectionsΔρmax = 0.53 e Å3
345 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58968 (16)0.74786 (14)0.53570 (12)0.0259 (3)
C21.23125 (13)0.84024 (11)0.28241 (10)0.0159 (2)
C31.20796 (14)0.71780 (11)0.34743 (10)0.0172 (2)
C41.17246 (14)0.70731 (11)0.45198 (10)0.0171 (2)
C51.16963 (14)0.82084 (11)0.45390 (10)0.0164 (2)
C61.20392 (13)0.90340 (11)0.35053 (10)0.0162 (2)
C71.24135 (17)0.61244 (12)0.31968 (12)0.0242 (3)
H7A1.33880.57630.34540.036*
H7B1.24420.63730.24330.036*
H7C1.16290.55510.35230.036*
C81.15648 (16)0.59327 (12)0.54552 (11)0.0231 (3)
H8A1.25620.55800.56620.035*
H8B1.09950.53930.52760.035*
H8C1.10330.60800.60390.035*
C91.15069 (15)0.84959 (13)0.54951 (11)0.0215 (3)
H9A1.09860.78600.60660.032*
H9B1.09150.92340.53340.032*
H9C1.24950.85810.57110.032*
C101.23222 (16)1.03016 (12)0.32731 (11)0.0211 (3)
H10A1.14391.06600.35110.032*
H10B1.25181.07270.25160.032*
H10C1.31941.03440.36410.032*
C111.00179 (14)0.90793 (11)0.15095 (10)0.0174 (2)
C120.91352 (14)0.80494 (12)0.18039 (10)0.0185 (2)
C130.77183 (14)0.82711 (12)0.22438 (10)0.0198 (3)
C140.77051 (15)0.94074 (12)0.22560 (10)0.0200 (3)
C150.91203 (15)0.99051 (12)0.18264 (10)0.0191 (3)
C160.94484 (17)0.69740 (13)0.15552 (12)0.0260 (3)
H16A0.92540.62660.21900.039*
H16B1.05000.69540.13030.039*
H16C0.87940.70020.10110.039*
C170.64426 (16)0.74435 (14)0.25364 (12)0.0274 (3)
H17A0.55240.78360.26910.041*
H17B0.66800.67400.31580.041*
H17C0.62930.72160.19510.041*
C180.64100 (16)1.00534 (14)0.25750 (12)0.0277 (3)
H18A0.55060.95930.27210.042*
H18B0.62391.08220.20050.042*
H18C0.66401.01670.32070.042*
C190.94394 (17)1.11605 (13)0.16261 (12)0.0269 (3)
H19A0.87611.16950.11120.040*
H19B1.04811.13210.13530.040*
H19C0.92831.12810.22840.040*
C201.30357 (16)0.81839 (14)0.06447 (12)0.0259 (3)
H20A1.28690.85880.01050.039*
H20B1.26020.74040.09140.039*
H20C1.41160.80970.07450.039*
C211.29702 (17)1.05308 (14)0.06461 (12)0.0273 (3)
H21A1.40571.04530.07190.041*
H21B1.25331.10910.09380.041*
H21C1.27671.08160.00990.041*
C220.2846 (2)0.51076 (15)0.92610 (13)0.0324 (3)
C230.3928 (2)0.42008 (15)0.95117 (13)0.0322 (3)
H230.45770.41150.89690.039*
C240.4076 (2)0.34204 (15)1.05370 (14)0.0356 (4)
H240.48230.28041.06940.043*
C250.3142 (2)0.35320 (16)1.13357 (14)0.0391 (4)
H250.32420.29941.20410.047*
C260.2062 (2)0.44329 (17)1.10995 (15)0.0423 (4)
H260.14180.45161.16450.051*
C270.1913 (2)0.52142 (16)1.00728 (15)0.0386 (4)
H270.11650.58300.99190.046*
C280.2695 (3)0.5961 (2)0.81478 (16)0.0527 (5)
H28A0.16310.61680.80230.079*
H28B0.31190.55990.76690.079*
H28C0.32340.66730.80240.079*
F10.54313 (12)0.80934 (13)0.59177 (11)0.0573 (4)
F20.54471 (13)0.64004 (11)0.58649 (13)0.0646 (4)
F30.52543 (11)0.79295 (12)0.44650 (8)0.0506 (3)
O10.83465 (10)0.86990 (8)0.45646 (7)0.01930 (19)
O20.83824 (11)0.68098 (8)0.45356 (8)0.02005 (19)
O30.83893 (12)0.69747 (10)0.62510 (8)0.0284 (2)
S10.79568 (3)0.74753 (3)0.51933 (2)0.01848 (8)
Si11.21202 (4)0.90663 (3)0.13687 (3)0.01739 (8)
Ti10.97754 (2)0.82592 (2)0.33331 (2)0.01345 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (6)0.0309 (7)0.0279 (7)0.0036 (5)0.0037 (5)0.0109 (6)
C20.0109 (5)0.0186 (6)0.0191 (6)0.0004 (4)0.0004 (4)0.0086 (5)
C30.0128 (5)0.0181 (6)0.0213 (6)0.0010 (4)0.0021 (4)0.0083 (5)
C40.0129 (5)0.0188 (6)0.0190 (6)0.0012 (4)0.0041 (4)0.0064 (5)
C50.0115 (5)0.0204 (6)0.0182 (6)0.0014 (4)0.0043 (4)0.0082 (5)
C60.0116 (5)0.0184 (6)0.0196 (6)0.0004 (4)0.0016 (4)0.0084 (5)
C70.0260 (7)0.0205 (6)0.0284 (7)0.0028 (5)0.0015 (5)0.0127 (6)
C80.0238 (7)0.0208 (6)0.0214 (6)0.0008 (5)0.0051 (5)0.0042 (5)
C90.0197 (6)0.0276 (7)0.0198 (6)0.0002 (5)0.0034 (5)0.0119 (5)
C100.0212 (6)0.0194 (6)0.0248 (7)0.0034 (5)0.0001 (5)0.0106 (5)
C110.0166 (6)0.0210 (6)0.0140 (6)0.0002 (5)0.0020 (4)0.0058 (5)
C120.0160 (6)0.0239 (6)0.0169 (6)0.0013 (5)0.0026 (5)0.0089 (5)
C130.0143 (6)0.0269 (7)0.0179 (6)0.0007 (5)0.0041 (5)0.0079 (5)
C140.0152 (6)0.0266 (7)0.0171 (6)0.0044 (5)0.0050 (5)0.0074 (5)
C150.0175 (6)0.0205 (6)0.0174 (6)0.0023 (5)0.0037 (5)0.0054 (5)
C160.0229 (7)0.0299 (7)0.0315 (8)0.0034 (6)0.0009 (6)0.0184 (6)
C170.0171 (6)0.0390 (8)0.0287 (7)0.0074 (6)0.0023 (5)0.0150 (6)
C180.0196 (7)0.0350 (8)0.0268 (7)0.0094 (6)0.0032 (5)0.0114 (6)
C190.0275 (7)0.0204 (7)0.0305 (8)0.0026 (5)0.0049 (6)0.0076 (6)
C200.0199 (6)0.0377 (8)0.0239 (7)0.0002 (6)0.0022 (5)0.0168 (6)
C210.0260 (7)0.0296 (7)0.0220 (7)0.0081 (6)0.0020 (5)0.0052 (6)
C220.0400 (9)0.0310 (8)0.0288 (8)0.0074 (7)0.0056 (7)0.0128 (6)
C230.0372 (9)0.0336 (8)0.0328 (8)0.0071 (7)0.0022 (7)0.0204 (7)
C240.0422 (9)0.0259 (8)0.0416 (9)0.0009 (7)0.0066 (7)0.0158 (7)
C250.0545 (11)0.0308 (8)0.0285 (8)0.0090 (8)0.0004 (7)0.0070 (7)
C260.0463 (10)0.0446 (10)0.0372 (9)0.0063 (8)0.0111 (8)0.0191 (8)
C270.0362 (9)0.0371 (9)0.0440 (10)0.0015 (7)0.0010 (7)0.0181 (8)
C280.0716 (15)0.0499 (12)0.0325 (10)0.0025 (10)0.0116 (9)0.0103 (9)
F10.0236 (5)0.0954 (10)0.0815 (9)0.0014 (6)0.0060 (5)0.0675 (8)
F20.0267 (5)0.0386 (6)0.1027 (11)0.0119 (5)0.0114 (6)0.0012 (7)
F30.0183 (5)0.0914 (9)0.0342 (6)0.0009 (5)0.0043 (4)0.0157 (6)
O10.0173 (4)0.0203 (5)0.0210 (5)0.0008 (3)0.0004 (3)0.0090 (4)
O20.0180 (4)0.0193 (4)0.0231 (5)0.0024 (3)0.0008 (4)0.0086 (4)
O30.0253 (5)0.0373 (6)0.0180 (5)0.0005 (4)0.0004 (4)0.0062 (4)
S10.01491 (15)0.02177 (16)0.01749 (15)0.00141 (11)0.00086 (11)0.00655 (12)
Si10.01411 (16)0.02167 (18)0.01623 (17)0.00235 (13)0.00148 (12)0.00741 (14)
Ti10.01059 (11)0.01561 (11)0.01411 (11)0.00023 (8)0.00111 (8)0.00574 (8)
Geometric parameters (Å, º) top
C1—F31.3046 (18)C15—C191.5077 (19)
C1—F21.3114 (18)C15—Ti12.3557 (13)
C1—F11.3166 (19)C16—H16A0.9800
C1—S11.8384 (15)C16—H16B0.9800
C2—C31.4438 (17)C16—H16C0.9800
C2—C61.4444 (17)C17—H17A0.9800
C2—Si11.8755 (13)C17—H17B0.9800
C2—Ti12.3194 (12)C17—H17C0.9800
C3—C41.4176 (18)C18—H18A0.9800
C3—C71.5047 (18)C18—H18B0.9800
C3—Ti12.3623 (12)C18—H18C0.9800
C4—C51.4135 (18)C19—H19A0.9800
C4—C81.4999 (18)C19—H19B0.9800
C4—Ti12.4755 (12)C19—H19C0.9800
C5—C61.4187 (18)C20—Si11.8692 (15)
C5—C91.4990 (18)C20—H20A0.9800
C5—Ti12.4727 (12)C20—H20B0.9800
C6—C101.5051 (18)C20—H20C0.9800
C6—Ti12.3615 (12)C21—Si11.8677 (15)
C7—H7A0.9800C21—H21A0.9800
C7—H7B0.9800C21—H21B0.9800
C7—H7C0.9800C21—H21C0.9800
C8—H8A0.9800C22—C231.386 (2)
C8—H8B0.9800C22—C271.393 (3)
C8—H8C0.9800C22—C281.500 (2)
C9—H9A0.9800C23—C241.381 (2)
C9—H9B0.9800C23—H230.9500
C9—H9C0.9800C24—C251.381 (3)
C10—H10A0.9800C24—H240.9500
C10—H10B0.9800C25—C261.381 (3)
C10—H10C0.9800C25—H250.9500
C11—C151.4408 (18)C26—C271.383 (3)
C11—C121.4420 (18)C26—H260.9500
C11—Si11.8747 (13)C27—H270.9500
C11—Ti12.3250 (13)C28—H28A0.9800
C12—C131.4215 (18)C28—H28B0.9800
C12—C161.5055 (19)C28—H28C0.9800
C12—Ti12.3554 (13)O1—S11.4670 (10)
C13—C141.412 (2)O1—Ti12.2704 (10)
C13—C171.5039 (19)O2—S11.4679 (10)
C13—Ti12.4674 (13)O2—Ti12.2697 (9)
C14—C151.4239 (19)O3—S11.4255 (11)
C14—C181.5024 (19)S1—Ti12.7973 (4)
C14—Ti12.4716 (13)
F3—C1—F2108.35 (14)Si1—C20—H20C109.5
F3—C1—F1108.26 (14)H20A—C20—H20C109.5
F2—C1—F1107.77 (14)H20B—C20—H20C109.5
F3—C1—S1112.84 (10)Si1—C21—H21A109.5
F2—C1—S1109.98 (11)Si1—C21—H21B109.5
F1—C1—S1109.49 (10)H21A—C21—H21B109.5
C3—C2—C6106.27 (11)Si1—C21—H21C109.5
C3—C2—Si1123.84 (9)H21A—C21—H21C109.5
C6—C2—Si1124.63 (9)H21B—C21—H21C109.5
C3—C2—Ti173.67 (7)C23—C22—C27118.20 (16)
C6—C2—Ti173.62 (7)C23—C22—C28121.03 (17)
Si1—C2—Ti197.66 (5)C27—C22—C28120.76 (18)
C4—C3—C2108.42 (11)C24—C23—C22121.07 (16)
C4—C3—C7122.41 (12)C24—C23—H23119.5
C2—C3—C7128.27 (12)C22—C23—H23119.5
C4—C3—Ti177.39 (7)C25—C24—C23120.28 (17)
C2—C3—Ti170.42 (7)C25—C24—H24119.9
C7—C3—Ti1126.85 (9)C23—C24—H24119.9
C5—C4—C3108.47 (11)C24—C25—C26119.37 (17)
C5—C4—C8126.18 (12)C24—C25—H25120.3
C3—C4—C8125.07 (12)C26—C25—H25120.3
C5—C4—Ti173.29 (7)C25—C26—C27120.37 (17)
C3—C4—Ti168.63 (7)C25—C26—H26119.8
C8—C4—Ti1128.48 (9)C27—C26—H26119.8
C4—C5—C6108.41 (11)C26—C27—C22120.70 (17)
C4—C5—C9126.45 (12)C26—C27—H27119.7
C6—C5—C9124.83 (12)C22—C27—H27119.7
C4—C5—Ti173.51 (7)C22—C28—H28A109.5
C6—C5—Ti168.69 (7)C22—C28—H28B109.5
C9—C5—Ti1128.51 (9)H28A—C28—H28B109.5
C5—C6—C2108.40 (11)C22—C28—H28C109.5
C5—C6—C10122.12 (12)H28A—C28—H28C109.5
C2—C6—C10128.60 (12)H28B—C28—H28C109.5
C5—C6—Ti177.28 (7)S1—O1—Ti194.46 (5)
C2—C6—Ti170.44 (7)S1—O2—Ti194.46 (5)
C10—C6—Ti1126.89 (9)O3—S1—O1117.29 (6)
C3—C7—H7A109.5O3—S1—O2117.22 (6)
C3—C7—H7B109.5O1—S1—O2106.45 (6)
H7A—C7—H7B109.5O3—S1—C1102.50 (7)
C3—C7—H7C109.5O1—S1—C1106.02 (6)
H7A—C7—H7C109.5O2—S1—C1106.19 (6)
H7B—C7—H7C109.5O3—S1—Ti1128.92 (5)
C4—C8—H8A109.5O1—S1—Ti154.02 (4)
C4—C8—H8B109.5O2—S1—Ti153.99 (4)
H8A—C8—H8B109.5C1—S1—Ti1128.58 (5)
C4—C8—H8C109.5C21—Si1—C20101.81 (7)
H8A—C8—H8C109.5C21—Si1—C11115.70 (7)
H8B—C8—H8C109.5C20—Si1—C11116.30 (6)
C5—C9—H9A109.5C21—Si1—C2115.90 (6)
C5—C9—H9B109.5C20—Si1—C2114.92 (6)
H9A—C9—H9B109.5C11—Si1—C293.08 (6)
C5—C9—H9C109.5O2—Ti1—O162.37 (3)
H9A—C9—H9C109.5O2—Ti1—C2133.35 (4)
H9B—C9—H9C109.5O1—Ti1—C2133.20 (4)
C6—C10—H10A109.5O2—Ti1—C11134.36 (4)
C6—C10—H10B109.5O1—Ti1—C11134.60 (4)
H10A—C10—H10B109.5C2—Ti1—C1171.76 (5)
C6—C10—H10C109.5O2—Ti1—C1298.83 (4)
H10A—C10—H10C109.5O1—Ti1—C12131.35 (4)
H10B—C10—H10C109.5C2—Ti1—C1293.25 (5)
C15—C11—C12106.30 (11)C11—Ti1—C1235.88 (4)
C15—C11—Si1123.57 (10)O2—Ti1—C15131.78 (4)
C12—C11—Si1124.38 (10)O1—Ti1—C1599.17 (4)
C15—C11—Ti173.24 (7)C2—Ti1—C1592.69 (5)
C12—C11—Ti173.21 (7)C11—Ti1—C1535.85 (5)
Si1—C11—Ti197.49 (5)C12—Ti1—C1558.64 (5)
C13—C12—C11108.44 (12)O2—Ti1—C6129.96 (4)
C13—C12—C16121.83 (12)O1—Ti1—C697.72 (4)
C11—C12—C16128.97 (12)C2—Ti1—C635.93 (4)
C13—C12—Ti177.23 (8)C11—Ti1—C693.23 (5)
C11—C12—Ti170.91 (7)C12—Ti1—C6124.59 (5)
C16—C12—Ti1125.89 (9)C15—Ti1—C694.66 (5)
C14—C13—C12108.46 (12)O2—Ti1—C397.92 (4)
C14—C13—C17127.86 (13)O1—Ti1—C3130.01 (4)
C12—C13—C17123.44 (13)C2—Ti1—C335.91 (4)
C14—C13—Ti173.56 (7)C11—Ti1—C392.98 (5)
C12—C13—Ti168.59 (7)C12—Ti1—C395.03 (5)
C17—C13—Ti1127.84 (9)C15—Ti1—C3124.00 (5)
C13—C14—C15108.22 (12)C6—Ti1—C358.57 (4)
C13—C14—C18127.43 (13)O2—Ti1—C1380.42 (4)
C15—C14—C18124.17 (13)O1—Ti1—C1397.20 (4)
C13—C14—Ti173.23 (7)C2—Ti1—C13126.42 (5)
C15—C14—Ti168.44 (7)C11—Ti1—C1357.90 (4)
C18—C14—Ti1127.63 (9)C12—Ti1—C1334.18 (4)
C14—C15—C11108.51 (12)C15—Ti1—C1356.83 (5)
C14—C15—C19122.23 (12)C6—Ti1—C13149.62 (5)
C11—C15—C19128.71 (12)C3—Ti1—C13125.98 (5)
C14—C15—Ti177.36 (8)O2—Ti1—C1497.62 (4)
C11—C15—Ti170.92 (7)O1—Ti1—C1480.36 (4)
C19—C15—Ti1124.61 (9)C2—Ti1—C14126.03 (5)
C12—C16—H16A109.5C11—Ti1—C1457.89 (4)
C12—C16—H16B109.5C12—Ti1—C1456.82 (5)
H16A—C16—H16B109.5C15—Ti1—C1434.20 (4)
C12—C16—H16C109.5C6—Ti1—C14125.37 (5)
H16A—C16—H16C109.5C3—Ti1—C14149.63 (5)
H16B—C16—H16C109.5C13—Ti1—C1433.21 (5)
C13—C17—H17A109.5O2—Ti1—C595.97 (4)
C13—C17—H17B109.5O1—Ti1—C578.93 (4)
H17A—C17—H17B109.5C2—Ti1—C557.86 (4)
C13—C17—H17C109.5C11—Ti1—C5126.29 (4)
H17A—C17—H17C109.5C12—Ti1—C5149.71 (4)
H17B—C17—H17C109.5C15—Ti1—C5125.44 (5)
C14—C18—H18A109.5C6—Ti1—C534.03 (4)
C14—C18—H18B109.5C3—Ti1—C556.68 (4)
H18A—C18—H18B109.5C13—Ti1—C5175.67 (4)
C14—C18—H18C109.5C14—Ti1—C5146.28 (5)
H18A—C18—H18C109.5O2—Ti1—C479.07 (4)
H18B—C18—H18C109.5O1—Ti1—C496.08 (4)
C15—C19—H19A109.5C2—Ti1—C457.80 (4)
C15—C19—H19B109.5C11—Ti1—C4126.05 (4)
H19A—C19—H19B109.5C12—Ti1—C4125.64 (5)
C15—C19—H19C109.5C15—Ti1—C4149.15 (5)
H19A—C19—H19C109.5C6—Ti1—C456.65 (4)
H19B—C19—H19C109.5C3—Ti1—C433.98 (4)
Si1—C20—H20A109.5C13—Ti1—C4146.77 (5)
Si1—C20—H20B109.5C14—Ti1—C4176.02 (4)
H20A—C20—H20B109.5C5—Ti1—C433.20 (4)
C6—C2—C3—C41.79 (14)C12—C13—C14—Ti160.01 (9)
Si1—C2—C3—C4157.06 (9)C17—C13—C14—Ti1125.51 (14)
Ti1—C2—C3—C468.73 (9)C13—C14—C15—C111.81 (15)
C6—C2—C3—C7171.04 (12)C18—C14—C15—C11173.69 (12)
Si1—C2—C3—C733.69 (18)Ti1—C14—C15—C1164.63 (9)
Ti1—C2—C3—C7122.01 (13)C13—C14—C15—C19174.03 (12)
C6—C2—C3—Ti166.95 (8)C18—C14—C15—C191.5 (2)
Si1—C2—C3—Ti188.33 (9)Ti1—C14—C15—C19123.15 (13)
C2—C3—C4—C51.26 (14)C13—C14—C15—Ti162.83 (9)
C7—C3—C4—C5171.28 (12)C18—C14—C15—Ti1121.68 (13)
Ti1—C3—C4—C562.86 (9)C12—C11—C15—C142.63 (14)
C2—C3—C4—C8173.07 (12)Si1—C11—C15—C14156.81 (9)
C7—C3—C4—C83.1 (2)Ti1—C11—C15—C1468.90 (9)
Ti1—C3—C4—C8122.80 (12)C12—C11—C15—C19174.19 (13)
C2—C3—C4—Ti164.12 (8)Si1—C11—C15—C1931.63 (19)
C7—C3—C4—Ti1125.86 (12)Ti1—C11—C15—C19119.54 (14)
C3—C4—C5—C60.22 (14)C12—C11—C15—Ti166.27 (9)
C8—C4—C5—C6174.04 (12)Si1—C11—C15—Ti187.91 (9)
Ti1—C4—C5—C660.13 (8)C27—C22—C23—C240.2 (2)
C3—C4—C5—C9174.03 (12)C28—C22—C23—C24179.50 (17)
C8—C4—C5—C90.2 (2)C22—C23—C24—C250.0 (3)
Ti1—C4—C5—C9126.06 (13)C23—C24—C25—C260.1 (3)
C3—C4—C5—Ti159.91 (9)C24—C25—C26—C270.2 (3)
C8—C4—C5—Ti1125.83 (13)C25—C26—C27—C220.0 (3)
C4—C5—C6—C20.91 (14)C23—C22—C27—C260.2 (3)
C9—C5—C6—C2173.02 (11)C28—C22—C27—C26179.46 (19)
Ti1—C5—C6—C264.11 (8)Ti1—O1—S1—O3119.93 (6)
C4—C5—C6—C10171.01 (11)Ti1—O1—S1—O213.61 (6)
C9—C5—C6—C102.93 (19)Ti1—O1—S1—C1126.39 (6)
Ti1—C5—C6—C10125.80 (12)Ti1—O2—S1—O3119.97 (6)
C4—C5—C6—Ti163.19 (9)Ti1—O2—S1—O113.62 (6)
C9—C5—C6—Ti1122.87 (12)Ti1—O2—S1—C1126.28 (6)
C3—C2—C6—C51.66 (13)F3—C1—S1—O3178.93 (12)
Si1—C2—C6—C5156.68 (9)F2—C1—S1—O359.96 (14)
Ti1—C2—C6—C568.63 (9)F1—C1—S1—O358.29 (13)
C3—C2—C6—C10170.91 (12)F3—C1—S1—O155.41 (13)
Si1—C2—C6—C1034.07 (18)F2—C1—S1—O1176.52 (12)
Ti1—C2—C6—C10122.11 (13)F1—C1—S1—O165.24 (13)
C3—C2—C6—Ti166.98 (8)F3—C1—S1—O257.55 (13)
Si1—C2—C6—Ti188.05 (9)F2—C1—S1—O263.56 (13)
C15—C11—C12—C132.49 (14)F1—C1—S1—O2178.20 (11)
Si1—C11—C12—C13156.40 (10)F3—C1—S1—Ti11.03 (15)
Ti1—C11—C12—C1368.77 (9)F2—C1—S1—Ti1120.08 (11)
C15—C11—C12—C16172.51 (13)F1—C1—S1—Ti1121.67 (11)
Si1—C11—C12—C1633.57 (19)C15—C11—Si1—C2146.12 (13)
Ti1—C11—C12—C16121.20 (14)C12—C11—Si1—C21164.31 (11)
C15—C11—C12—Ti166.29 (9)Ti1—C11—Si1—C21120.94 (7)
Si1—C11—C12—Ti187.63 (9)C15—C11—Si1—C20165.54 (11)
C11—C12—C13—C141.42 (15)C12—C11—Si1—C2044.89 (13)
C16—C12—C13—C14172.31 (12)Ti1—C11—Si1—C20119.64 (7)
Ti1—C12—C13—C1463.17 (9)C15—C11—Si1—C274.64 (11)
C11—C12—C13—C17173.35 (12)C12—C11—Si1—C274.93 (11)
C16—C12—C13—C172.5 (2)Ti1—C11—Si1—C20.18 (6)
Ti1—C12—C13—C17122.06 (13)C3—C2—Si1—C21163.79 (10)
C11—C12—C13—Ti164.59 (9)C6—C2—Si1—C2145.42 (13)
C16—C12—C13—Ti1124.53 (13)Ti1—C2—Si1—C21120.78 (7)
C12—C13—C14—C150.23 (15)C3—C2—Si1—C2045.33 (12)
C17—C13—C14—C15174.71 (13)C6—C2—Si1—C20163.88 (10)
Ti1—C13—C14—C1559.78 (9)Ti1—C2—Si1—C20120.76 (6)
C12—C13—C14—C18175.07 (13)C3—C2—Si1—C1175.62 (11)
C17—C13—C14—C180.6 (2)C6—C2—Si1—C1175.17 (11)
Ti1—C13—C14—C18124.92 (14)Ti1—C2—Si1—C110.18 (6)
(2) Chlorido[dimethylbis(η5-tetramethylcyclopentadienyl)silane](trifluoromethanesulfonato-κO)titanium(IV) top
Crystal data top
[Ti(CF3O3S)(C20H30Si)Cl]F(000) = 1104
Mr = 530.95Dx = 1.514 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.0958 (3) ÅCell parameters from 9538 reflections
b = 15.8656 (5) Åθ = 2.7–28.9°
c = 14.5544 (5) ŵ = 0.67 mm1
β = 91.9841 (8)°T = 150 K
V = 2329.87 (13) Å3Prism, brown
Z = 40.46 × 0.39 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
5616 independent reflections
Radiation source: fine-focus sealed tube5121 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.021
φ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1313
Tmin = 0.78, Tmax = 0.84k = 2020
34539 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.5546P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5616 reflectionsΔρmax = 0.52 e Å3
290 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.87010 (16)0.09502 (10)0.07287 (11)0.0215 (3)
C20.93422 (16)0.14833 (10)0.13964 (11)0.0242 (3)
C31.01692 (16)0.20424 (10)0.09269 (12)0.0237 (3)
C41.00415 (15)0.18752 (10)0.00264 (11)0.0214 (3)
C50.91229 (15)0.11877 (9)0.01688 (10)0.0195 (3)
C60.78351 (19)0.02185 (10)0.09707 (12)0.0282 (3)
H6A0.79860.00750.16210.042*
H6B0.80510.02680.05900.042*
H6C0.69030.03710.08600.042*
C70.9267 (2)0.14231 (13)0.24187 (12)0.0350 (4)
H7A1.01210.12300.26810.052*
H7B0.85730.10210.25750.052*
H7C0.90580.19780.26700.052*
C81.11255 (18)0.26533 (12)0.13645 (14)0.0328 (4)
H8A1.08060.28260.19640.049*
H8B1.12020.31500.09690.049*
H8C1.19960.23850.14470.049*
C91.09811 (17)0.22400 (11)0.07006 (13)0.0295 (4)
H9A1.09630.28570.06620.044*
H9B1.07110.20630.13250.044*
H9C1.18810.20380.05540.044*
C100.7318 (2)0.00588 (11)0.13260 (13)0.0329 (4)
H10A0.67810.01030.18980.049*
H10B0.67450.01160.08000.049*
H10C0.79850.05080.13060.049*
C110.90950 (19)0.10131 (12)0.23582 (12)0.0314 (4)
H11A0.96980.05300.23720.047*
H11B0.96070.15370.23840.047*
H11C0.84710.09860.28880.047*
C120.59174 (14)0.19625 (10)0.05544 (10)0.0193 (3)
C130.56798 (15)0.28149 (10)0.03005 (11)0.0211 (3)
C140.66644 (15)0.33208 (10)0.06821 (10)0.0202 (3)
C150.75316 (15)0.27912 (9)0.11656 (10)0.0186 (3)
C160.70697 (14)0.19312 (9)0.11032 (9)0.0173 (3)
C170.49988 (16)0.12536 (11)0.03345 (12)0.0269 (3)
H17A0.46940.13220.02930.040*
H17B0.54680.07160.03840.040*
H17C0.42350.12600.07680.040*
C180.45215 (17)0.31396 (13)0.02048 (13)0.0324 (4)
H18A0.47900.36380.05630.049*
H18B0.42090.27020.06200.049*
H18C0.38060.32920.02370.049*
C190.67144 (19)0.42629 (11)0.06534 (13)0.0301 (4)
H19A0.62130.44920.11850.045*
H19B0.76380.44500.06700.045*
H19C0.63240.44630.00860.045*
C200.85573 (17)0.31524 (11)0.17744 (12)0.0273 (3)
H20A0.81260.35190.22370.041*
H20B0.90170.26930.20820.041*
H20C0.91990.34810.14020.041*
C210.92606 (18)0.49005 (11)0.14872 (13)0.0319 (4)
Cl10.64690 (4)0.21108 (3)0.15956 (3)0.02798 (10)
F10.89370 (14)0.53045 (8)0.07146 (9)0.0494 (3)
F21.05184 (12)0.46705 (8)0.14446 (10)0.0484 (3)
F30.91613 (13)0.54360 (8)0.21805 (9)0.0500 (3)
O10.84799 (11)0.34845 (7)0.08518 (7)0.0206 (2)
O20.86681 (16)0.36367 (9)0.25169 (9)0.0399 (3)
O30.68782 (13)0.43477 (9)0.16428 (10)0.0370 (3)
S10.81793 (4)0.39961 (3)0.16735 (3)0.02400 (10)
Si10.81618 (4)0.09881 (3)0.12776 (3)0.01962 (10)
Ti10.78529 (2)0.23242 (2)0.03725 (2)0.01467 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0255 (7)0.0178 (7)0.0210 (7)0.0011 (6)0.0020 (6)0.0017 (6)
C20.0283 (8)0.0229 (8)0.0208 (7)0.0020 (6)0.0070 (6)0.0015 (6)
C30.0201 (7)0.0224 (7)0.0281 (8)0.0012 (6)0.0063 (6)0.0019 (6)
C40.0176 (7)0.0200 (7)0.0265 (8)0.0001 (5)0.0007 (6)0.0019 (6)
C50.0203 (7)0.0164 (7)0.0218 (7)0.0009 (5)0.0014 (5)0.0007 (5)
C60.0396 (9)0.0195 (8)0.0254 (8)0.0055 (7)0.0006 (7)0.0050 (6)
C70.0483 (11)0.0367 (10)0.0192 (8)0.0033 (8)0.0104 (7)0.0029 (7)
C80.0247 (8)0.0360 (10)0.0368 (10)0.0040 (7)0.0104 (7)0.0072 (8)
C90.0208 (7)0.0302 (9)0.0378 (10)0.0061 (6)0.0052 (7)0.0008 (7)
C100.0438 (10)0.0219 (8)0.0330 (9)0.0092 (7)0.0007 (8)0.0069 (7)
C110.0386 (9)0.0323 (9)0.0239 (8)0.0019 (7)0.0101 (7)0.0076 (7)
C120.0173 (7)0.0229 (7)0.0175 (7)0.0058 (5)0.0020 (5)0.0001 (5)
C130.0182 (7)0.0245 (8)0.0204 (7)0.0008 (6)0.0031 (5)0.0007 (6)
C140.0219 (7)0.0197 (7)0.0186 (7)0.0011 (5)0.0054 (5)0.0017 (5)
C150.0215 (7)0.0199 (7)0.0142 (6)0.0053 (5)0.0022 (5)0.0020 (5)
C160.0202 (7)0.0193 (7)0.0122 (6)0.0059 (5)0.0017 (5)0.0002 (5)
C170.0228 (7)0.0290 (8)0.0290 (8)0.0113 (6)0.0025 (6)0.0005 (7)
C180.0214 (8)0.0387 (10)0.0372 (10)0.0027 (7)0.0029 (7)0.0064 (8)
C190.0381 (9)0.0190 (8)0.0326 (9)0.0004 (7)0.0067 (7)0.0015 (7)
C200.0321 (8)0.0254 (8)0.0245 (8)0.0091 (6)0.0051 (6)0.0057 (6)
C210.0349 (9)0.0272 (9)0.0342 (9)0.0127 (7)0.0093 (7)0.0131 (7)
Cl10.0321 (2)0.0305 (2)0.02182 (19)0.00467 (16)0.00684 (15)0.00270 (15)
F10.0689 (9)0.0324 (6)0.0472 (7)0.0205 (6)0.0045 (6)0.0030 (5)
F20.0319 (6)0.0439 (7)0.0702 (9)0.0163 (5)0.0126 (6)0.0186 (6)
F30.0599 (8)0.0400 (7)0.0516 (7)0.0251 (6)0.0222 (6)0.0304 (6)
O10.0241 (5)0.0198 (5)0.0179 (5)0.0044 (4)0.0014 (4)0.0047 (4)
O20.0576 (9)0.0423 (8)0.0195 (6)0.0121 (7)0.0013 (6)0.0043 (5)
O30.0296 (6)0.0348 (7)0.0473 (8)0.0048 (5)0.0129 (6)0.0135 (6)
S10.0279 (2)0.02325 (19)0.02114 (19)0.00863 (14)0.00550 (14)0.00723 (14)
Si10.0245 (2)0.0176 (2)0.0169 (2)0.00461 (15)0.00285 (15)0.00384 (15)
Ti10.01655 (13)0.01508 (13)0.01236 (12)0.00346 (9)0.00027 (9)0.00043 (9)
Geometric parameters (Å, º) top
C1—C21.427 (2)C12—C161.435 (2)
C1—C51.438 (2)C12—C171.499 (2)
C1—C61.502 (2)C12—Ti12.4051 (14)
C1—Ti12.3923 (15)C13—C141.407 (2)
C2—C31.411 (2)C13—C181.495 (2)
C2—C71.495 (2)C13—Ti12.4960 (15)
C2—Ti12.4711 (15)C14—C151.418 (2)
C3—C41.414 (2)C14—C191.496 (2)
C3—C81.495 (2)C14—Ti12.4835 (15)
C3—Ti12.4878 (15)C15—C161.446 (2)
C4—C51.442 (2)C15—C201.500 (2)
C4—C91.504 (2)C15—Ti12.3696 (14)
C4—Ti12.4116 (15)C16—Si11.8810 (16)
C5—Si11.8809 (16)C16—Ti12.3472 (14)
C5—Ti12.3634 (15)C17—H17A0.9800
C6—H6A0.9800C17—H17B0.9800
C6—H6B0.9800C17—H17C0.9800
C6—H6C0.9800C18—H18A0.9800
C7—H7A0.9800C18—H18B0.9800
C7—H7B0.9800C18—H18C0.9800
C7—H7C0.9800C19—H19A0.9800
C8—H8A0.9800C19—H19B0.9800
C8—H8B0.9800C19—H19C0.9800
C8—H8C0.9800C20—H20A0.9800
C9—H9A0.9800C20—H20B0.9800
C9—H9B0.9800C20—H20C0.9800
C9—H9C0.9800C21—F21.325 (2)
C10—Si11.8670 (17)C21—F11.325 (2)
C10—H10A0.9800C21—F31.325 (2)
C10—H10B0.9800C21—S11.8287 (18)
C10—H10C0.9800Cl1—Ti12.3255 (5)
C11—Si11.8614 (18)O1—S11.4854 (11)
C11—H11A0.9800O1—Ti12.0605 (11)
C11—H11B0.9800O2—S11.4260 (14)
C11—H11C0.9800O3—S11.4265 (14)
C12—C131.424 (2)
C2—C1—C5108.77 (14)C13—C18—H18B109.5
C2—C1—C6123.53 (14)H18A—C18—H18B109.5
C5—C1—C6127.48 (14)C13—C18—H18C109.5
C2—C1—Ti175.99 (9)H18A—C18—H18C109.5
C5—C1—Ti171.30 (8)H18B—C18—H18C109.5
C6—C1—Ti1123.24 (11)C14—C19—H19A109.5
C3—C2—C1107.76 (14)C14—C19—H19B109.5
C3—C2—C7124.98 (15)H19A—C19—H19B109.5
C1—C2—C7127.04 (16)C14—C19—H19C109.5
C3—C2—Ti174.12 (9)H19A—C19—H19C109.5
C1—C2—Ti169.94 (8)H19B—C19—H19C109.5
C7—C2—Ti1125.71 (12)C15—C20—H20A109.5
C2—C3—C4108.78 (14)C15—C20—H20B109.5
C2—C3—C8125.85 (16)H20A—C20—H20B109.5
C4—C3—C8125.12 (16)C15—C20—H20C109.5
C2—C3—Ti172.82 (9)H20A—C20—H20C109.5
C4—C3—Ti170.29 (9)H20B—C20—H20C109.5
C8—C3—Ti1127.42 (12)F2—C21—F1107.58 (16)
C3—C4—C5108.62 (14)F2—C21—F3108.06 (15)
C3—C4—C9121.99 (14)F1—C21—F3108.23 (16)
C5—C4—C9127.90 (15)F2—C21—S1111.65 (13)
C3—C4—Ti176.21 (9)F1—C21—S1111.99 (12)
C5—C4—Ti170.61 (8)F3—C21—S1109.19 (12)
C9—C4—Ti1130.33 (11)S1—O1—Ti1133.78 (7)
C1—C5—C4106.07 (13)O2—S1—O3118.31 (9)
C1—C5—Si1125.10 (11)O2—S1—O1113.60 (8)
C4—C5—Si1124.11 (12)O3—S1—O1113.71 (7)
C1—C5—Ti173.50 (9)O2—S1—C21104.52 (9)
C4—C5—Ti174.26 (9)O3—S1—C21104.02 (9)
Si1—C5—Ti198.32 (6)O1—S1—C2199.77 (7)
C1—C6—H6A109.5C11—Si1—C10103.34 (8)
C1—C6—H6B109.5C11—Si1—C5117.40 (8)
H6A—C6—H6B109.5C10—Si1—C5113.79 (8)
C1—C6—H6C109.5C11—Si1—C16114.41 (8)
H6A—C6—H6C109.5C10—Si1—C16116.35 (8)
H6B—C6—H6C109.5C5—Si1—C1692.16 (6)
C2—C7—H7A109.5O1—Ti1—Cl193.24 (3)
C2—C7—H7B109.5O1—Ti1—C16129.56 (5)
H7A—C7—H7B109.5Cl1—Ti1—C16118.00 (4)
C2—C7—H7C109.5O1—Ti1—C5129.10 (5)
H7A—C7—H7C109.5Cl1—Ti1—C5119.43 (4)
H7B—C7—H7C109.5C16—Ti1—C570.23 (5)
C3—C8—H8A109.5O1—Ti1—C1594.07 (5)
C3—C8—H8B109.5Cl1—Ti1—C15134.62 (4)
H8A—C8—H8B109.5C16—Ti1—C1535.69 (5)
C3—C8—H8C109.5C5—Ti1—C1588.95 (5)
H8A—C8—H8C109.5O1—Ti1—C1129.59 (5)
H8B—C8—H8C109.5Cl1—Ti1—C185.49 (4)
C4—C9—H9A109.5C16—Ti1—C193.61 (5)
C4—C9—H9B109.5C5—Ti1—C135.20 (5)
H9A—C9—H9B109.5C15—Ti1—C1121.73 (5)
C4—C9—H9C109.5O1—Ti1—C12129.58 (5)
H9A—C9—H9C109.5Cl1—Ti1—C1284.07 (4)
H9B—C9—H9C109.5C16—Ti1—C1235.12 (5)
Si1—C10—H10A109.5C5—Ti1—C1294.05 (5)
Si1—C10—H10B109.5C15—Ti1—C1257.50 (5)
H10A—C10—H10B109.5C1—Ti1—C12100.48 (5)
Si1—C10—H10C109.5O1—Ti1—C494.14 (5)
H10A—C10—H10C109.5Cl1—Ti1—C4136.14 (4)
H10B—C10—H10C109.5C16—Ti1—C489.07 (5)
Si1—C11—H11A109.5C5—Ti1—C435.14 (5)
Si1—C11—H11B109.5C15—Ti1—C487.80 (5)
H11A—C11—H11B109.5C1—Ti1—C457.25 (5)
Si1—C11—H11C109.5C12—Ti1—C4121.86 (5)
H11A—C11—H11C109.5O1—Ti1—C296.02 (5)
H11B—C11—H11C109.5Cl1—Ti1—C280.15 (4)
C13—C12—C16108.93 (13)C16—Ti1—C2125.95 (5)
C13—C12—C17123.08 (14)C5—Ti1—C257.54 (5)
C16—C12—C17127.76 (14)C15—Ti1—C2143.04 (6)
C13—C12—Ti176.64 (8)C1—Ti1—C234.07 (5)
C16—C12—Ti170.24 (8)C12—Ti1—C2132.45 (5)
C17—C12—Ti1123.76 (11)C4—Ti1—C256.10 (6)
C14—C13—C12108.16 (14)O1—Ti1—C1477.09 (5)
C14—C13—C18124.98 (15)Cl1—Ti1—C14105.99 (4)
C12—C13—C18126.63 (15)C16—Ti1—C1457.55 (5)
C14—C13—Ti173.10 (8)C5—Ti1—C14122.40 (5)
C12—C13—Ti169.64 (8)C15—Ti1—C1433.87 (5)
C18—C13—Ti1127.34 (11)C1—Ti1—C14151.13 (5)
C13—C14—C15108.34 (13)C12—Ti1—C1455.91 (5)
C13—C14—C19125.64 (15)C4—Ti1—C14117.80 (5)
C15—C14—C19125.81 (15)C2—Ti1—C14170.86 (5)
C13—C14—Ti174.08 (9)O1—Ti1—C377.08 (5)
C15—C14—Ti168.66 (8)Cl1—Ti1—C3107.97 (4)
C19—C14—Ti1127.14 (11)C16—Ti1—C3122.15 (5)
C14—C15—C16108.79 (13)C5—Ti1—C357.07 (5)
C14—C15—C20121.17 (14)C15—Ti1—C3117.32 (6)
C16—C15—C20128.94 (14)C1—Ti1—C355.99 (5)
C14—C15—Ti177.47 (9)C12—Ti1—C3151.09 (5)
C16—C15—Ti171.31 (8)C4—Ti1—C333.51 (5)
C20—C15—Ti1127.07 (11)C2—Ti1—C333.06 (6)
C12—C16—C15105.77 (13)C14—Ti1—C3138.03 (5)
C12—C16—Si1126.38 (11)O1—Ti1—C1396.30 (5)
C15—C16—Si1123.39 (11)Cl1—Ti1—C1378.61 (4)
C12—C16—Ti174.65 (8)C16—Ti1—C1357.32 (5)
C15—C16—Ti173.00 (8)C5—Ti1—C13125.93 (5)
Si1—C16—Ti198.88 (6)C15—Ti1—C1356.08 (5)
C12—C17—H17A109.5C1—Ti1—C13132.25 (5)
C12—C17—H17B109.5C12—Ti1—C1333.73 (5)
H17A—C17—H17B109.5C4—Ti1—C13142.93 (5)
C12—C17—H17C109.5C2—Ti1—C13155.96 (6)
H17A—C17—H17C109.5C14—Ti1—C1332.82 (5)
H17B—C17—H17C109.5C3—Ti1—C13170.73 (5)
C13—C18—H18A109.5
C5—C1—C2—C30.69 (18)C18—C13—C14—Ti1124.13 (15)
C6—C1—C2—C3174.19 (15)C13—C14—C15—C161.11 (16)
Ti1—C1—C2—C364.99 (11)C19—C14—C15—C16173.83 (14)
C5—C1—C2—C7175.51 (16)Ti1—C14—C15—C1665.02 (10)
C6—C1—C2—C70.6 (3)C13—C14—C15—C20170.13 (14)
Ti1—C1—C2—C7120.19 (17)C19—C14—C15—C204.8 (2)
C5—C1—C2—Ti164.30 (11)Ti1—C14—C15—C20125.97 (14)
C6—C1—C2—Ti1120.82 (16)C13—C14—C15—Ti163.91 (11)
C1—C2—C3—C40.81 (18)C19—C14—C15—Ti1121.15 (15)
C7—C2—C3—C4175.76 (16)C13—C12—C16—C150.61 (16)
Ti1—C2—C3—C461.45 (11)C17—C12—C16—C15175.17 (14)
C1—C2—C3—C8173.60 (16)Ti1—C12—C16—C1566.88 (9)
C7—C2—C3—C81.4 (3)C13—C12—C16—Si1157.29 (11)
Ti1—C2—C3—C8124.14 (17)C17—C12—C16—Si128.1 (2)
C1—C2—C3—Ti162.25 (11)Ti1—C12—C16—Si189.80 (10)
C7—C2—C3—Ti1122.79 (17)C13—C12—C16—Ti167.49 (10)
C2—C3—C4—C50.62 (18)C17—C12—C16—Ti1117.95 (15)
C8—C3—C4—C5173.84 (15)C14—C15—C16—C121.05 (16)
Ti1—C3—C4—C563.67 (10)C20—C15—C16—C12168.95 (15)
C2—C3—C4—C9167.72 (15)Ti1—C15—C16—C1268.04 (9)
C8—C3—C4—C96.7 (3)C14—C15—C16—Si1158.61 (10)
Ti1—C3—C4—C9129.23 (15)C20—C15—C16—Si133.5 (2)
C2—C3—C4—Ti163.05 (11)Ti1—C15—C16—Si189.53 (10)
C8—C3—C4—Ti1122.49 (16)C14—C15—C16—Ti169.08 (10)
C2—C1—C5—C40.31 (17)C20—C15—C16—Ti1123.01 (16)
C6—C1—C5—C4174.31 (15)Ti1—O1—S1—O267.83 (12)
Ti1—C1—C5—C467.68 (10)Ti1—O1—S1—O371.37 (12)
C2—C1—C5—Si1156.01 (12)Ti1—O1—S1—C21178.50 (10)
C6—C1—C5—Si129.4 (2)F2—C21—S1—O258.80 (15)
Ti1—C1—C5—Si188.65 (11)F1—C21—S1—O2179.51 (13)
C2—C1—C5—Ti167.36 (11)F3—C21—S1—O260.63 (16)
C6—C1—C5—Ti1118.01 (16)F2—C21—S1—O3176.48 (13)
C3—C4—C5—C10.18 (17)F1—C21—S1—O355.77 (15)
C9—C4—C5—C1166.30 (16)F3—C21—S1—O364.09 (16)
Ti1—C4—C5—C167.15 (10)F2—C21—S1—O158.86 (14)
C3—C4—C5—Si1156.80 (11)F1—C21—S1—O161.85 (14)
C9—C4—C5—Si137.1 (2)F3—C21—S1—O1178.29 (14)
Ti1—C4—C5—Si189.47 (11)C1—C5—Si1—C11160.06 (13)
C3—C4—C5—Ti167.33 (11)C4—C5—Si1—C1147.72 (16)
C9—C4—C5—Ti1126.55 (16)Ti1—C5—Si1—C11124.30 (8)
C16—C12—C13—C140.06 (17)C1—C5—Si1—C1039.23 (16)
C17—C12—C13—C14174.81 (14)C4—C5—Si1—C10168.55 (13)
Ti1—C12—C13—C1463.38 (10)Ti1—C5—Si1—C10114.87 (8)
C16—C12—C13—C18174.65 (15)C1—C5—Si1—C1680.91 (14)
C17—C12—C13—C180.2 (2)C4—C5—Si1—C1671.31 (13)
Ti1—C12—C13—C18122.02 (16)Ti1—C5—Si1—C165.27 (6)
C16—C12—C13—Ti163.33 (10)C12—C16—Si1—C11155.74 (13)
C17—C12—C13—Ti1121.80 (15)C15—C16—Si1—C1151.39 (14)
C12—C13—C14—C150.72 (17)Ti1—C16—Si1—C11126.83 (8)
C18—C13—C14—C15175.43 (15)C12—C16—Si1—C1035.24 (15)
Ti1—C13—C14—C1560.44 (10)C15—C16—Si1—C10171.90 (12)
C12—C13—C14—C19174.23 (14)Ti1—C16—Si1—C10112.67 (8)
C18—C13—C14—C190.5 (2)C12—C16—Si1—C582.73 (13)
Ti1—C13—C14—C19124.61 (15)C15—C16—Si1—C570.13 (13)
C12—C13—C14—Ti161.16 (10)Ti1—C16—Si1—C55.31 (7)
 

Acknowledgements

TB thanks Professor Uwe Rosenthal (LIKAT) for support. Funding by the BMBF (project Light2Hydrogen) is gratefully acknowledged.

References

First citationBasuli, F., Bailey, B. C., Tomaszewski, J., Huffman, J. C. & Mindiola, D. J. (2003). J. Am. Chem. Soc. 125, 6052–6053.  CSD CrossRef CAS Google Scholar
First citationBasuli, F., Huffman, J. C. & Mindiola, D. J. (2003). Inorg. Chem. 42, 8003–8010.  CSD CrossRef CAS Google Scholar
First citationBasuli, F., Kilgore, U. J., Brown, D., Huffman, J. C. & Mindiola, D. J. (2004). Organometallics, 23, 6166–6175.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeckhaus, R., Sang, J., Oster, J. & Wagner, T. (1994). J. Organomet. Chem. 484, 179–190.  CSD CrossRef CAS Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeacon, G. B., Junk, P. C., Ness, T. J., Schwering, R. & Meyer, G. (2006). J. Chem. Crystallogr. 36, 167–174.  CSD CrossRef CAS Google Scholar
First citationDonkervoort, J. G., Jastrzebski, J. T. B. H., Deelman, B.-J., Kooijman, H., Veldman, N., Spek, A. L. & van Koten, G. (1997). Organometallics, 16, 4174–4184.  CSD CrossRef CAS Web of Science Google Scholar
First citationGiannini, L., Caselli, A., Solari, E., Floriani, C., Chiesi-Villa, A., Rizzoli, C., Re, N. & Sgamellotti, A. (1997). J. Am. Chem. Soc. 119, 9198–9210.  CSD CrossRef CAS Google Scholar
First citationGodemann, C., Hollmann, D., Kessler, M., Jiao, H., Spannenberg, A., Brückner, A. & Beweries, T. (2015). J. Am. Chem. Soc. 137, 16187–16195.  CSD CrossRef CAS Google Scholar
First citationHitchcock, P. B., Hulkes, A. G., Lappert, M. F. & Protchenko, A. V. (2006). Inorg. Chim. Acta, 359, 2998–3006.  CSD CrossRef CAS Google Scholar
First citationHollmann, D., Grabow, K., Jiao, H., Kessler, M., Spannenberg, A., Beweries, T., Bentrup, U. & Brückner, A. (2013). Chem. Eur. J. 19, 13705–13713.  CSD CrossRef CAS Google Scholar
First citationKessler, M., Hansen, S., Hollmann, D., Klahn, M., Beweries, T., Spannenberg, A., Brückner, A. & Rosenthal, U. (2011). Eur. J. Inorg. Chem. pp. 627–631.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaw, F. L., Scott, B. L. & Kiplinger, J. L. (2003). J. Am. Chem. Soc. 125, 14712–14713.  CSD CrossRef CAS Google Scholar
First citationVarga, V., Hiller, J., Gyepes, R., Polášek, M., Sedmera, P., Thewalt, U. & Mach, K. (1997). J. Organomet. Chem. 538, 63–74.  CSD CrossRef CAS Google Scholar
First citationWerkema, E. L., Castro, L., Maron, L., Eisenstein, O. & Andersen, R. A. (2013). New J. Chem. 37, 132–142.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds