research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{μ2-3-(pyridin-2-yl)-5-[(1,2,4-triazol-1-yl)meth­yl]-1,2,4-triazolato}bis­­[aqua­nitrato­copper(II)] dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., 01033, Kyiv, Ukraine
*Correspondence e-mail: rdoroschuk@ukr.net

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 10 February 2016; accepted 29 February 2016; online 11 March 2016)

The structure of the dinuclear title complex, [Cu2(C10H8N7)2(NO3)2(H2O)2]·2H2O, consists of centrosymmetric dimeric units with a copper–copper separation of 4.0408 (3) Å. The CuII ions in the dimer display a distorted octa­hedral coordination geometry and are bridged by two triazole rings, forming an approximately planar Cu2N4 core (r.m.s. deviation = 0.049 Å). In the crystal, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds and ππ inter­actions link the mol­ecules into a three-dimensional network.

1. Chemical context

The presence in the triazole ring, three donor atoms and the possibility of introducing in the heterocycle substituents of a different nature creates the conditions for target synthesis of complexes with inter­esting structures and properties. The study of this type of coordination compound is promising since, as a result, a compound can be obtained with useful physical properties such as optical, magnetic or catalytic (Soghomonian et al., 1993[Soghomonian, V., Chen, Q., Haushalter, R. C., Zubieta, J. & O'Connor, C. J. (1993). Science, 259, 1596-1599.]; Blake et al., 1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]). Another inter­esting aspect of these compounds is the possibility of their use as functional models of enzymes such as catechol oxidase (Moliner et al., 2001[Moliner, N., Gaspar, A. B., Muñoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986-3991.]; Klingele et al., 2009[Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698-2741.]; Selmeczi et al., 2003[Selmeczi, K., Réglier, M., Giorgi, M. & Speier, G. (2003). Coord. Chem. Rev. 245, 191-201.]).

[Scheme 1]

2. Structural commentary

The structure of the title complex mol­ecule (Fig. 1[link]) has a crystallographically imposed centre of symmetry, and contains two copper(II) metal atoms doubly bridged by the triazole rings of two deprotonated ligands. Each copper(II) ion is coordinated in a distorted elongated octa­hedral geometry by one pyridine and three triazole nitro­gen atoms forming the equatorial plane, and by the O atoms of a water mol­ecule and a monodentate nitrate anion at the apices. The Cu—N bond lengths involving the bridging triazole ring [mean value 1.9722 (15) Å] are slightly, but significantly, shorter than those involving the pyridine and peripheral triazole rings [Cu1—N4 = 2.0386 (16) and Cu1—N7 = 2.0409 (17) Å]. The inner Cu2N4 core is approximately planar [r.m.s. deviation = 0.049 Å; maximum displacement 0.062 (2) Å for atom N2], with a Cu⋯Cu separation of 4.0408 (3) Å, in good agreement with the values usually observed in μ-triazolyl-bridged complexes (Haasnoot, 2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]). The central triazole ring makes dihedral angles of 7.78 (8) and 49.30 (8)°, respectively, with the pyridine and peripheral triazole rings. The six-membered chelate ring Cu1/N5/C7/C8/N6/N7 assumes a boat conformation [puckering parameters: QT = 0.619 (2) Å; θ2 = 88.62 (16)°], while the five-membered Cu1/N2/C1/C2/N4 chelate ring adopts a flattened envelope conformation with the Cu atom as flap [puckering parameters: Q = 0.127 (2) Å; φ = −156.8 (8)°].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. Dashed lines indicate hydrogen bonds. Unlabelled atoms are related to labelled atoms by (−x, 1 − y, −z).

3. Supra­molecular features

In the crystal, the complex molecules and water mol­ecules of crystallization are linked through O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds (Table 1[link]), forming a three-dimensional network (Fig. 2[link]). The crystal structure is further stabilized by ππ stacking inter­actions with centroid–centroid separations Cg1⋯Cg2ii = 3.8296 (13) Å and Cg3⋯Cg3iii = 3.5372 (10), and perpendic­ular inter­planar distances Cg1⋯Cg2ii = 3.5584 (9) and Cg3⋯Cg3iii = 3.3234 (10) Å [Cg1, Cg2 and Cg3 are the centroids of the N1/C2/N3/C7i/N5i, N4/C2–C6 and N6/N7/C9/N8/C10 rings, respectively; symmetry codes: (i) −x, 1 − y, −z; (ii) −x, −y, −z; (iii) 1 − x, −y, 1 − z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41O⋯O5i 0.71 (3) 2.03 (3) 2.735 (2) 172 (3)
O4—H42O⋯O5ii 0.79 (3) 1.96 (3) 2.735 (2) 168 (3)
O5—H51O⋯O2iii 0.78 (3) 2.02 (3) 2.773 (2) 163 (3)
O5—H52O⋯N3iv 0.76 (3) 2.08 (3) 2.836 (2) 177 (3)
C5—H5⋯O1i 0.95 2.43 3.360 (3) 166
C8—H8A⋯O4 0.99 2.56 3.160 (3) 119
C8—H8B⋯O2iii 0.99 2.36 3.319 (3) 162
C9—H9⋯O3v 0.95 2.44 3.205 (3) 137
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x, -y+1, -z; (v) -x, -y, -z+1.
[Figure 2]
Figure 2
Packing diagram of the title compound, viewed along the b axis. Inter­molecular hydrogen bonds are shown as blue dotted lines.

4. Database survey

The Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), returned 45 entries with the triazole bridging fragment Cu–(N–N)2–Cu. The most similar are: di­aqua­bis­(μ-3,5-bis­(2-pyrid­yl)-1,2,4-triazolato-N′,N1,N2,N′′)bis­(tri­fluoro­methane­sulfonato-O)dicopper(II) (Prins et al., 1985[Prins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). Inorg. Chem. 24, 4128-4133.]), bis­[μ-5-(pyridin-2-yl)-3-(1H-1,2,4-triazol-3-yl)-1,2,4-triazolato]di­aqua­dicopper diperchlorate (Zhou et al., 2014[Zhou, Y.-H., Wan, W.-Q., Sun, D.-L., Tao, J., Zhang, L. & Wei, X. (2014). Z. Anorg. Allg. Chem. 640, 249-253.]), bis­[μ3-(pyridin-2-yl)-5-([5-(pyridin-2-yl)-1,2,4-tria­zol-1-id-3-yl]meth­yl)-1,2,4-triazol-1-ide]tri­aqua­tricopper di­perchlorate dihydrate (Gusev et al., 2014[Gusev, A. N., Nemec, I., Herchel, R., Bayjyyev, E., Nyshchimenko, G. A., Alexandrov, G. G., Eremenko, I. L., Trávníček, Z., Hasegawa, M. & Linert, W. (2014). Dalton Trans. 43, 7153-7165.]) and bis­(μ-5-(2-eth­oxy-2-oxoeth­yl)-3-(pyridin-2-yl)-1H-1,2,4-triazol­yl)bis(acetonitrile)­bis­(perchlorato-O)dicopper (Khomenko et al., 2012[Khomenko, D. N., Doroshchuk, R. A., Egorov, O. A. & Lampeka, R. D. (2012). Ukr. Khim. Zh. 78, 22-27.]). Only 10 compounds containing a pyridyl and a methyl­ene moiety, as substituents in the 3- and 5-positions of 1,2,4-triazole, were found (Lin et al., 2013[Lin, W.-Q., Liao, X.-F., Jia, J.-H., Leng, J.-D., Liu, J.-L., Guo, F.-S. & Tong, M.-L. (2013). Chem. Eur. J. 19, 12254-12258.]; Gusev et al., 2014[Gusev, A. N., Nemec, I., Herchel, R., Bayjyyev, E., Nyshchimenko, G. A., Alexandrov, G. G., Eremenko, I. L., Trávníček, Z., Hasegawa, M. & Linert, W. (2014). Dalton Trans. 43, 7153-7165.] and references therein).

5. Synthesis and crystallization

A water solution of Cu(NO3)2·3H2O (0.25 mmol, 0.0605 g) was added to a hot solution of 2-[5-(1,2,4,)-triazol-1-yl-methyl-1H-(1,2,4)-triazol-3­yl]pyridine (0.25 mmol, 0.059 g) in water (7 ml). The transparent blue solution was left to evaporate slowly in the air and after few hours, blue single crystals suitable for X-ray analysis were obtained (yield: 67%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms of water mol­ecules were located from a difference Fourier map and refined freely. All other H atoms were constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C10H8N7)2(NO3)2(H2O)2]·2H2O
Mr 775.63
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.8421 (2), 8.8636 (2), 10.5686 (2)
α, β, γ (°) 70.114 (1), 88.6311 (10), 66.765 (1)
V3) 709.87 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.58
Crystal size (mm) 0.50 × 0.50 × 0.45
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.505, 0.536
No. of measured, independent and observed [I > 2σ(I)] reflections 8672, 2945, 2711
Rint 0.025
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.07
No. of reflections 2945
No. of parameters 233
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.57
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis{µ2-3-(pyridin-2-yl)-5-[(1,2,4-triazol-1-yl)methyl]-1,2,4-triazolato}bis[aquanitratocopper(II)] dihydrate top
Crystal data top
[Cu2(C10H8N7)2(NO3)2(H2O)2]·2H2OZ = 1
Mr = 775.63F(000) = 394
Triclinic, P1Dx = 1.814 Mg m3
a = 8.8421 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8636 (2) ÅCell parameters from 6116 reflections
c = 10.5686 (2) Åθ = 2.5–26.5°
α = 70.114 (1)°µ = 1.58 mm1
β = 88.6311 (10)°T = 173 K
γ = 66.765 (1)°Prism, blue
V = 709.87 (3) Å30.50 × 0.50 × 0.45 mm
Data collection top
Bruker APEXII CCD
diffractometer
2711 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.6°, θmin = 2.5°
Tmin = 0.505, Tmax = 0.536h = 811
8672 measured reflectionsk = 1111
2945 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.4452P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2945 reflectionsΔρmax = 0.26 e Å3
233 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.11824 (3)0.26915 (3)0.15525 (2)0.01617 (9)
N10.2107 (2)0.3725 (2)0.34951 (17)0.0208 (4)
N20.0714 (2)0.3636 (2)0.01433 (17)0.0166 (3)
N30.3010 (2)0.3463 (2)0.04965 (17)0.0185 (3)
N40.0614 (2)0.0562 (2)0.20396 (16)0.0169 (3)
N50.1657 (2)0.4800 (2)0.08348 (17)0.0169 (3)
N60.3708 (2)0.2657 (2)0.34195 (17)0.0184 (3)
N70.2554 (2)0.2013 (2)0.33410 (17)0.0185 (3)
N80.3280 (2)0.1530 (3)0.55105 (19)0.0291 (4)
O10.1224 (2)0.4373 (2)0.27750 (19)0.0352 (4)
O20.34096 (19)0.4721 (2)0.38151 (16)0.0281 (3)
O30.1751 (2)0.2133 (2)0.38786 (18)0.0361 (4)
O40.3491 (2)0.1266 (2)0.07991 (19)0.0289 (4)
H41O0.388 (3)0.033 (4)0.104 (3)0.029 (8)*
H42O0.376 (3)0.168 (4)0.010 (3)0.032 (8)*
O50.5124 (2)0.7700 (2)0.15015 (19)0.0254 (3)
H51O0.563 (4)0.698 (4)0.219 (3)0.042 (9)*
H52O0.458 (4)0.736 (4)0.125 (3)0.041 (9)*
C10.1560 (2)0.2649 (2)0.03218 (19)0.0165 (4)
C20.0792 (2)0.0862 (2)0.13281 (19)0.0172 (4)
C30.1479 (3)0.1054 (3)0.2939 (2)0.0207 (4)
H30.24740.12830.34380.025*
C40.0969 (3)0.2412 (3)0.3170 (2)0.0237 (4)
H40.16140.35510.38100.028*
C50.0481 (3)0.2088 (3)0.2461 (2)0.0239 (4)
H50.08580.29940.26140.029*
C60.1384 (3)0.0411 (3)0.1517 (2)0.0221 (4)
H60.23890.01490.10130.027*
C70.3006 (2)0.4957 (2)0.1186 (2)0.0173 (4)
C80.4370 (2)0.3469 (3)0.2234 (2)0.0204 (4)
H8A0.50190.25770.18420.025*
H8B0.51260.39130.25080.025*
C90.2342 (3)0.1361 (3)0.4624 (2)0.0227 (4)
H90.15910.08200.48980.027*
C100.4109 (3)0.2351 (3)0.4713 (2)0.0249 (4)
H100.48880.26790.50260.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01744 (14)0.01210 (13)0.01794 (14)0.00721 (9)0.00253 (9)0.00253 (10)
N10.0217 (9)0.0206 (8)0.0188 (8)0.0079 (7)0.0028 (7)0.0063 (7)
N20.0175 (8)0.0123 (7)0.0186 (8)0.0065 (6)0.0017 (6)0.0031 (6)
N30.0192 (8)0.0183 (8)0.0192 (8)0.0098 (7)0.0007 (7)0.0052 (7)
N40.0192 (8)0.0149 (7)0.0165 (8)0.0071 (6)0.0009 (6)0.0054 (6)
N50.0165 (8)0.0132 (7)0.0183 (8)0.0058 (6)0.0029 (6)0.0027 (6)
N60.0178 (8)0.0149 (7)0.0209 (9)0.0071 (6)0.0037 (6)0.0038 (7)
N70.0168 (8)0.0169 (8)0.0211 (9)0.0079 (6)0.0007 (6)0.0047 (7)
N80.0331 (10)0.0328 (10)0.0214 (9)0.0139 (8)0.0005 (8)0.0090 (8)
O10.0337 (9)0.0291 (8)0.0463 (11)0.0184 (7)0.0147 (8)0.0121 (8)
O20.0240 (8)0.0294 (8)0.0283 (8)0.0063 (6)0.0038 (6)0.0128 (7)
O30.0486 (11)0.0177 (8)0.0398 (10)0.0139 (7)0.0086 (8)0.0074 (7)
O40.0316 (9)0.0164 (8)0.0332 (10)0.0058 (7)0.0129 (7)0.0079 (7)
O50.0245 (8)0.0180 (7)0.0312 (9)0.0098 (7)0.0023 (7)0.0045 (7)
C10.0187 (9)0.0154 (9)0.0170 (9)0.0089 (7)0.0013 (7)0.0053 (7)
C20.0197 (9)0.0165 (9)0.0164 (9)0.0077 (7)0.0031 (7)0.0067 (8)
C30.0219 (10)0.0172 (9)0.0195 (10)0.0059 (8)0.0000 (8)0.0049 (8)
C40.0341 (12)0.0143 (9)0.0185 (10)0.0087 (8)0.0023 (8)0.0025 (8)
C50.0361 (12)0.0179 (9)0.0226 (11)0.0162 (9)0.0069 (9)0.0073 (8)
C60.0265 (11)0.0212 (10)0.0221 (10)0.0140 (8)0.0015 (8)0.0069 (8)
C70.0167 (9)0.0177 (9)0.0179 (10)0.0082 (7)0.0007 (7)0.0056 (8)
C80.0168 (9)0.0196 (9)0.0225 (10)0.0090 (8)0.0020 (8)0.0027 (8)
C90.0244 (10)0.0204 (10)0.0214 (10)0.0087 (8)0.0019 (8)0.0058 (8)
C100.0281 (11)0.0234 (10)0.0226 (11)0.0101 (9)0.0038 (8)0.0079 (9)
Geometric parameters (Å, º) top
Cu1—N51.9709 (15)N8—C91.349 (3)
Cu1—N21.9732 (16)O4—H41O0.71 (3)
Cu1—N42.0386 (16)O4—H42O0.79 (3)
Cu1—N72.0409 (17)O5—H51O0.78 (3)
Cu1—O42.2293 (16)O5—H52O0.76 (3)
N1—O31.234 (2)C1—C21.463 (3)
N1—O11.244 (2)C2—C61.376 (3)
N1—O21.266 (2)C3—C41.391 (3)
N2—C11.326 (2)C3—H30.9500
N2—N5i1.356 (2)C4—C51.377 (3)
N3—C7i1.342 (2)C4—H40.9500
N3—C11.346 (3)C5—C61.391 (3)
N4—C31.335 (3)C5—H50.9500
N4—C21.352 (3)C6—H60.9500
N5—C71.329 (2)C7—N3i1.342 (2)
N5—N2i1.356 (2)C7—C81.496 (3)
N6—C101.328 (3)C8—H8A0.9900
N6—N71.368 (2)C8—H8B0.9900
N6—C81.455 (3)C9—H90.9500
N7—C91.321 (3)C10—H100.9500
N8—C101.323 (3)
N5—Cu1—N293.75 (6)N2—C1—N3113.40 (17)
N5—Cu1—N4172.58 (6)N2—C1—C2116.86 (17)
N2—Cu1—N480.29 (6)N3—C1—C2129.72 (17)
N5—Cu1—N788.59 (6)N4—C2—C6122.81 (18)
N2—Cu1—N7161.96 (7)N4—C2—C1112.59 (16)
N4—Cu1—N798.45 (6)C6—C2—C1124.57 (18)
N5—Cu1—O487.79 (7)N4—C3—C4122.16 (19)
N2—Cu1—O4108.72 (7)N4—C3—H3118.9
N4—Cu1—O489.95 (6)C4—C3—H3118.9
N7—Cu1—O489.23 (7)C5—C4—C3119.35 (19)
O3—N1—O1120.96 (18)C5—C4—H4120.3
O3—N1—O2119.57 (17)C3—C4—H4120.3
O1—N1—O2119.45 (17)C4—C5—C6118.81 (18)
C1—N2—N5i105.92 (15)C4—C5—H5120.6
C1—N2—Cu1114.60 (13)C6—C5—H5120.6
N5i—N2—Cu1137.73 (12)C2—C6—C5118.65 (19)
C7i—N3—C1101.45 (15)C2—C6—H6120.7
C3—N4—C2118.20 (16)C5—C6—H6120.7
C3—N4—Cu1127.56 (14)N5—C7—N3i113.47 (17)
C2—N4—Cu1114.23 (13)N5—C7—C8121.54 (17)
C7—N5—N2i105.75 (15)N3i—C7—C8124.98 (17)
C7—N5—Cu1126.66 (13)N6—C8—C7111.03 (16)
N2i—N5—Cu1127.56 (12)N6—C8—H8A109.4
C10—N6—N7108.72 (16)C7—C8—H8A109.4
C10—N6—C8128.56 (17)N6—C8—H8B109.4
N7—N6—C8122.68 (16)C7—C8—H8B109.4
C9—N7—N6102.89 (16)H8A—C8—H8B108.0
C9—N7—Cu1132.81 (14)N7—C9—N8114.40 (19)
N6—N7—Cu1122.03 (12)N7—C9—H9122.8
C10—N8—C9102.87 (18)N8—C9—H9122.8
Cu1—O4—H41O121 (2)N8—C10—N6111.12 (18)
Cu1—O4—H42O123 (2)N8—C10—H10124.4
H41O—O4—H42O112 (3)N6—C10—H10124.4
H51O—O5—H52O107 (3)
C10—N6—N7—C90.2 (2)N4—C3—C4—C50.6 (3)
C8—N6—N7—C9178.21 (17)C3—C4—C5—C60.9 (3)
C10—N6—N7—Cu1165.14 (14)N4—C2—C6—C51.3 (3)
C8—N6—N7—Cu116.9 (2)C1—C2—C6—C5176.53 (18)
N5i—N2—C1—N30.8 (2)C4—C5—C6—C20.0 (3)
Cu1—N2—C1—N3168.39 (13)N2i—N5—C7—N3i0.0 (2)
N5i—N2—C1—C2179.30 (16)Cu1—N5—C7—N3i178.11 (12)
Cu1—N2—C1—C213.1 (2)N2i—N5—C7—C8178.85 (17)
C7i—N3—C1—N20.8 (2)Cu1—N5—C7—C80.8 (3)
C7i—N3—C1—C2179.06 (19)C10—N6—C8—C7127.1 (2)
C3—N4—C2—C61.6 (3)N7—N6—C8—C755.3 (2)
Cu1—N4—C2—C6179.68 (15)N5—C7—C8—N646.0 (2)
C3—N4—C2—C1176.44 (16)N3i—C7—C8—N6135.26 (19)
Cu1—N4—C2—C12.2 (2)N6—N7—C9—N80.5 (2)
N2—C1—C2—N47.0 (2)Cu1—N7—C9—N8162.96 (15)
N3—C1—C2—N4174.73 (18)C10—N8—C9—N70.5 (2)
N2—C1—C2—C6171.04 (18)C9—N8—C10—N60.3 (2)
N3—C1—C2—C67.2 (3)N7—N6—C10—N80.1 (2)
C2—N4—C3—C40.7 (3)C8—N6—C10—N8177.76 (18)
Cu1—N4—C3—C4179.13 (14)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41O···O5ii0.71 (3)2.03 (3)2.735 (2)172 (3)
O4—H42O···O5iii0.79 (3)1.96 (3)2.735 (2)168 (3)
O5—H51O···O2iv0.78 (3)2.02 (3)2.773 (2)163 (3)
O5—H52O···N3i0.76 (3)2.08 (3)2.836 (2)177 (3)
C5—H5···O1ii0.952.433.360 (3)166
C8—H8A···O40.992.563.160 (3)119
C8—H8B···O2iv0.992.363.319 (3)162
C9—H9···O3v0.952.443.205 (3)137
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y, z+1.
 

References

First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGusev, A. N., Nemec, I., Herchel, R., Bayjyyev, E., Nyshchimenko, G. A., Alexandrov, G. G., Eremenko, I. L., Trávníček, Z., Hasegawa, M. & Linert, W. (2014). Dalton Trans. 43, 7153–7165.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationKhomenko, D. N., Doroshchuk, R. A., Egorov, O. A. & Lampeka, R. D. (2012). Ukr. Khim. Zh. 78, 22–27.  CAS Google Scholar
First citationKlingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698–2741.  Web of Science CrossRef CAS Google Scholar
First citationLin, W.-Q., Liao, X.-F., Jia, J.-H., Leng, J.-D., Liu, J.-L., Guo, F.-S. & Tong, M.-L. (2013). Chem. Eur. J. 19, 12254–12258.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoliner, N., Gaspar, A. B., Muñoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPrins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). Inorg. Chem. 24, 4128–4133.  CSD CrossRef CAS Web of Science Google Scholar
First citationSelmeczi, K., Réglier, M., Giorgi, M. & Speier, G. (2003). Coord. Chem. Rev. 245, 191–201.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoghomonian, V., Chen, Q., Haushalter, R. C., Zubieta, J. & O'Connor, C. J. (1993). Science, 259, 1596–1599.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationZhou, Y.-H., Wan, W.-Q., Sun, D.-L., Tao, J., Zhang, L. & Wei, X. (2014). Z. Anorg. Allg. Chem. 640, 249–253.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds