organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N′-di­phenyl­methyl­­idene-5-methyl-1H-pyrazole-3-carbo­hydrazide

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco, bLCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, Oujda, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: k_karrouchi@yahoo.fr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 13 October 2015; accepted 23 October 2015; online 28 October 2015)

In the title compound, C18H16N4O, the planes of the phenyl rings are approximately perpendicular to each other [dihedral angle = 78.07 (8)°] and form dihedral angles of 56.43 (8) and 24.59 (8)° with the pyrazole ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds to form one-dimensional chains parallel to the [010] direction.

1. Related literature

For the biological activities of pyrazole derivatives, see: Zhang et al. (2015[Zhang, H., Zhu, P., Liu, J., Lin, Y., Yao, H., Jiang, J., Ye, W., Wu, X. & Xu, J. (2015). Bioorg. Med. Chem. Lett. 25, 728-732.]); Özdemir et al. (2015[Özdemir, Z., Karakurt, A., Çali, Ü., Günal, S., Işik, Ş., Şahin, Z. S. & Dalkara, S. (2015). Med. Chem. 11, 41-49.]); El-Sabbagh et al. (2009[El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746-3753.]); Farag et al. (2010[Farag, A. M., Ali, K. A., El-Debss, T. M., Mayhoub, A. S., Amr, A. G., Abdel-Hafez, N. A. & Abdulla, M. M. (2010). Eur. J. Med. Chem. 45, 5887-5898.]); Karrouchi et al. (2014[Karrouchi, K., Doudach, L., Chemlal, L., Karim, M., Taoufik, J., Cherrah, Y., Radi, S., Faouzi, M. E. A. & Ansar, M. (2014). Int. J. Pharm. 4, 79-87.]); Mert et al. (2014[Mert, S., Kasımoğulları, R., İça, T., Çolak, F., Altun, A. & Ok, S. (2014). Eur. J. Med. Chem. 78, 86-96.]); Alegaon et al. (2014[Alegaon, S. G., Alagawadi, K. R., Garg, M. K., Dushyant, K. & Vinod, D. (2014). Bioorg. Chem. 54, 51-59.]). For the applications in agrochemical and pharmaceutical industries of pyrazole derivatives, see: Patel et al. (2004[Patel, M. V., Bell, R., Majest, S., Henry, R. & Kolasa, T. (2004). J. Org. Chem. 69, 7058-7065.]). For the structure of a related compound, see: Karrouchi et al. (2013[Karrouchi, K., Charkaoui, Y., Benlafya, K., Ramli, Y., Taoufik, J., Radi, S. & Ansar, M. (2013). J. Chem. Pharm. Res. 5, 1-6.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H16N4O

  • Mr = 304.35

  • Orthorhombic P b c a

  • a = 11.0299 (2) Å

  • b = 14.1131 (2) Å

  • c = 20.2211 (3) Å

  • V = 3147.74 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.40 × 0.32 × 0.25 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • 31259 measured reflections

  • 3766 independent reflections

  • 3117 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.04

  • 3766 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.02 2.8740 (15) 172
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Compounds containing the pyrazole moiety are known to exhibit a wide range of biological properties such as anticancer (Zhang et al., 2015), anticonvulsant (Özdemir et al., 2015), antiviral (El-Sabbagh et al., 2009), anti-tumor (Farag et al., 2010), analgesic, sedative (Karrouchi et al., 2014), antimicrobial (Mert et al., 2014), and anti-inflammatory activities (Alegaon et al., 2014). In addition, pyrazoles have a wide variety of applications in the agrochemical and pharmaceutical industries (Patel et al., 2004). Recently we have reported the synthesis of substituted pyrazoles (Karrouchi et al., 2013). As an extension of our work on the structural characterization of pyrazoles, the title compound was prepared and analysed by single-crystal X-ray diffraction.

The molecule of the title compound is build up from two phenyl rings linked to a pyrazole ring through the carbohydrazide group as shown in Fig. 1. The phenyl rings C7–C12 and C13–C18) are nearly approximately as indicated by the dihedral angle of 78.07 (8)° between them, and form makes dihedral angles of 56.43 (8)° and 24.59 (8)°, respectively, with the pyrazole ring. In the crystal, the molecules held together by N1–H1N···O1 hydrogen bonds and form one-dimensional chains along the [0 1 0] direction.

Related literature top

For the biological activities of pyrazole derivatives, see: Zhang et al. (2015); Özdemir et al. (2015); El-Sabbagh et al. (2009); Farag et al. (2010); Karrouchi et al. (2014); Mert et al. (2014); Alegaon et al. (2014). For the applications in agrochemical and pharmaceutical industries of pyrazole derivatives, see: Patel et al. (2004). For the structure of a related compound, see: Karrouchi et al. (2013).

Experimental top

To a solution of 5-methyl-1H-pyrazole-3-carbohydrazide (1 mmol) in 10 ml of ethanol, an equimolar amount of the benzophenon was added in the presence of acetic acid. The mixture was maintained under reflux for 2 h, then the precipitate formed was filtered out washed with ethanol and recrystallized from ethanol. Single crystals of the title compound were obtained on slow evaporation of the solvent (yield 87%; m. p. 595 K).

IR (KBr, ν(cm-1)): 3241 (NH), 1655 (C=O), 1592 (N=CH). 1H-NMR (300 MHz, DMSO-d6, δ (p.p.m.)): δ = 2.19 (s, 3H, –CH3), 6.46 (s, 1H, Pz—H), 7.37–7.56 (m, 10H, Ar—H), 9.80 (s, 1H, N=CH), 11.23 (s, 1H, CONH), 12.99 (s, 1H, Pz—NH). MS: m/z = 304.9 (M—H+).

Refinement top

The H atoms were located in a difference Fourier map and treated as riding, with C—H = 0.93-0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq (C, N) or 1.5 Ueq for methyl H atoms. The reflection (0 0 2) affected by the beamstop was removed during the last cycles of refinement.

Structure description top

Compounds containing the pyrazole moiety are known to exhibit a wide range of biological properties such as anticancer (Zhang et al., 2015), anticonvulsant (Özdemir et al., 2015), antiviral (El-Sabbagh et al., 2009), anti-tumor (Farag et al., 2010), analgesic, sedative (Karrouchi et al., 2014), antimicrobial (Mert et al., 2014), and anti-inflammatory activities (Alegaon et al., 2014). In addition, pyrazoles have a wide variety of applications in the agrochemical and pharmaceutical industries (Patel et al., 2004). Recently we have reported the synthesis of substituted pyrazoles (Karrouchi et al., 2013). As an extension of our work on the structural characterization of pyrazoles, the title compound was prepared and analysed by single-crystal X-ray diffraction.

The molecule of the title compound is build up from two phenyl rings linked to a pyrazole ring through the carbohydrazide group as shown in Fig. 1. The phenyl rings C7–C12 and C13–C18) are nearly approximately as indicated by the dihedral angle of 78.07 (8)° between them, and form makes dihedral angles of 56.43 (8)° and 24.59 (8)°, respectively, with the pyrazole ring. In the crystal, the molecules held together by N1–H1N···O1 hydrogen bonds and form one-dimensional chains along the [0 1 0] direction.

For the biological activities of pyrazole derivatives, see: Zhang et al. (2015); Özdemir et al. (2015); El-Sabbagh et al. (2009); Farag et al. (2010); Karrouchi et al. (2014); Mert et al. (2014); Alegaon et al. (2014). For the applications in agrochemical and pharmaceutical industries of pyrazole derivatives, see: Patel et al. (2004). For the structure of a related compound, see: Karrouchi et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip,2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial crystal packing of the title compound, showing molecules linked by N–H···O hydrogen bonds (dashed lines) into a chain parallel to the b axis.
N'-Diphenylmethylidene-5-methyl-1H-pyrazole-3-carbohydrazide top
Crystal data top
C18H16N4OF(000) = 1280
Mr = 304.35Dx = 1.284 Mg m3
Orthorhombic, PbcaMelting point: 595 K
a = 11.0299 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.1131 (2) ŵ = 0.08 mm1
c = 20.2211 (3) ÅT = 296 K
V = 3147.74 (9) Å3Block, colourless
Z = 80.40 × 0.32 × 0.25 mm
Data collection top
Bruker X8 APEX
diffractometer
3117 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.9°, θmin = 2.6°
φ and ω scansh = 1413
31259 measured reflectionsk = 1817
3766 independent reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0655P)2 + 1.2766P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3766 reflectionsΔρmax = 0.33 e Å3
208 parametersΔρmin = 0.26 e Å3
Crystal data top
C18H16N4OV = 3147.74 (9) Å3
Mr = 304.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.0299 (2) ŵ = 0.08 mm1
b = 14.1131 (2) ÅT = 296 K
c = 20.2211 (3) Å0.40 × 0.32 × 0.25 mm
Data collection top
Bruker X8 APEX
diffractometer
3117 reflections with I > 2σ(I)
31259 measured reflectionsRint = 0.029
3766 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
3766 reflectionsΔρmin = 0.26 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.95160 (17)0.23308 (11)0.22978 (11)0.0559 (5)
H1A1.02360.26140.21190.084*
H1B0.97350.18730.26280.084*
H1C0.90730.20240.19500.084*
C20.87443 (13)0.30798 (9)0.26034 (8)0.0351 (3)
C30.88909 (13)0.40388 (9)0.26613 (7)0.0349 (3)
H30.95380.44030.25120.042*
C40.78552 (12)0.43513 (8)0.29934 (7)0.0292 (3)
C50.75426 (13)0.53261 (9)0.31897 (7)0.0304 (3)
C60.50855 (13)0.62906 (9)0.40692 (7)0.0320 (3)
C70.40970 (13)0.55750 (9)0.40017 (7)0.0338 (3)
C80.42278 (16)0.46563 (11)0.42431 (8)0.0444 (4)
H80.49450.44800.44510.053*
C90.33011 (19)0.40042 (13)0.41756 (10)0.0567 (5)
H90.33980.33930.43390.068*
C100.22390 (18)0.42554 (14)0.38688 (10)0.0576 (5)
H100.16160.38160.38250.069*
C110.20965 (16)0.51595 (14)0.36252 (10)0.0537 (4)
H110.13790.53270.34140.064*
C120.30150 (15)0.58207 (12)0.36924 (8)0.0439 (4)
H120.29080.64320.35300.053*
C130.48843 (13)0.71522 (9)0.44807 (7)0.0332 (3)
C140.56815 (15)0.79196 (10)0.44439 (8)0.0413 (4)
H140.62880.79250.41240.050*
C150.55768 (17)0.86695 (11)0.48774 (10)0.0505 (4)
H150.61180.91740.48520.061*
C160.46712 (17)0.86744 (12)0.53494 (9)0.0514 (4)
H160.46110.91760.56460.062*
C170.38608 (17)0.79383 (13)0.53797 (9)0.0498 (4)
H170.32430.79480.56920.060*
C180.39577 (14)0.71784 (11)0.49463 (8)0.0414 (3)
H180.34000.66850.49680.050*
N10.76763 (11)0.28765 (8)0.28919 (7)0.0368 (3)
H1N0.73850.23120.29140.044*
N20.71101 (11)0.36377 (8)0.31412 (7)0.0355 (3)
N30.64218 (11)0.54067 (8)0.34657 (7)0.0366 (3)
HN30.58960.49610.34240.044*
N40.61501 (11)0.62165 (8)0.38121 (6)0.0346 (3)
O10.82345 (10)0.59943 (7)0.31103 (6)0.0420 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0517 (10)0.0332 (8)0.0829 (13)0.0055 (7)0.0233 (9)0.0125 (8)
C20.0336 (7)0.0267 (6)0.0450 (8)0.0025 (5)0.0051 (6)0.0028 (5)
C30.0334 (7)0.0265 (6)0.0447 (8)0.0014 (5)0.0091 (6)0.0007 (5)
C40.0298 (6)0.0212 (6)0.0367 (7)0.0000 (5)0.0014 (5)0.0006 (5)
C50.0323 (7)0.0209 (6)0.0381 (7)0.0011 (5)0.0014 (5)0.0014 (5)
C60.0332 (7)0.0264 (6)0.0364 (7)0.0032 (5)0.0001 (5)0.0003 (5)
C70.0340 (7)0.0313 (6)0.0362 (7)0.0004 (5)0.0043 (6)0.0032 (5)
C80.0480 (9)0.0376 (8)0.0475 (9)0.0026 (7)0.0017 (7)0.0059 (6)
C90.0650 (12)0.0432 (9)0.0618 (11)0.0147 (8)0.0084 (9)0.0086 (8)
C100.0510 (11)0.0598 (11)0.0621 (11)0.0240 (9)0.0113 (9)0.0067 (9)
C110.0384 (9)0.0655 (11)0.0573 (10)0.0062 (8)0.0015 (8)0.0080 (9)
C120.0398 (8)0.0410 (8)0.0510 (9)0.0025 (6)0.0023 (7)0.0015 (7)
C130.0332 (7)0.0274 (6)0.0391 (7)0.0062 (5)0.0015 (6)0.0017 (5)
C140.0401 (8)0.0320 (7)0.0519 (9)0.0034 (6)0.0059 (7)0.0040 (6)
C150.0500 (10)0.0332 (7)0.0682 (11)0.0008 (7)0.0002 (8)0.0120 (7)
C160.0571 (10)0.0424 (9)0.0549 (10)0.0092 (8)0.0010 (8)0.0187 (7)
C170.0507 (10)0.0510 (9)0.0477 (9)0.0078 (7)0.0097 (8)0.0103 (7)
C180.0391 (8)0.0378 (7)0.0473 (8)0.0017 (6)0.0065 (7)0.0044 (6)
N10.0342 (6)0.0183 (5)0.0580 (8)0.0004 (4)0.0070 (6)0.0042 (5)
N20.0318 (6)0.0208 (5)0.0540 (7)0.0002 (4)0.0077 (5)0.0035 (5)
N30.0325 (6)0.0226 (5)0.0547 (7)0.0017 (4)0.0064 (5)0.0095 (5)
N40.0341 (6)0.0237 (5)0.0459 (7)0.0029 (4)0.0022 (5)0.0067 (5)
O10.0402 (6)0.0216 (5)0.0643 (7)0.0040 (4)0.0108 (5)0.0039 (4)
Geometric parameters (Å, º) top
C1—C21.491 (2)C10—C111.377 (3)
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600C11—C121.384 (2)
C1—H1C0.9600C11—H110.9300
C2—N11.3455 (19)C12—H120.9300
C2—C31.3681 (18)C13—C181.390 (2)
C3—C41.3966 (19)C13—C141.397 (2)
C3—H30.9300C14—C151.379 (2)
C4—N21.3339 (16)C14—H140.9300
C4—C51.4727 (17)C15—C161.382 (3)
C5—O11.2238 (16)C15—H150.9300
C5—N31.3611 (18)C16—C171.372 (3)
C6—N41.2883 (19)C16—H160.9300
C6—C131.4901 (18)C17—C181.389 (2)
C6—C71.4924 (19)C17—H170.9300
C7—C121.391 (2)C18—H180.9300
C7—C81.393 (2)N1—N21.3411 (15)
C8—C91.382 (2)N1—H1N0.8600
C8—H80.9300N3—N41.3736 (15)
C9—C101.372 (3)N3—HN30.8600
C9—H90.9300
C2—C1—H1A109.5C10—C11—C12120.42 (17)
C2—C1—H1B109.5C10—C11—H11119.8
H1A—C1—H1B109.5C12—C11—H11119.8
C2—C1—H1C109.5C11—C12—C7120.26 (16)
H1A—C1—H1C109.5C11—C12—H12119.9
H1B—C1—H1C109.5C7—C12—H12119.9
N1—C2—C3106.10 (12)C18—C13—C14118.57 (13)
N1—C2—C1121.89 (13)C18—C13—C6120.63 (13)
C3—C2—C1132.01 (14)C14—C13—C6120.61 (13)
C2—C3—C4104.89 (12)C15—C14—C13120.56 (15)
C2—C3—H3127.6C15—C14—H14119.7
C4—C3—H3127.6C13—C14—H14119.7
N2—C4—C3111.92 (11)C14—C15—C16120.23 (16)
N2—C4—C5120.04 (12)C14—C15—H15119.9
C3—C4—C5128.03 (12)C16—C15—H15119.9
O1—C5—N3123.76 (12)C17—C16—C15119.89 (15)
O1—C5—C4122.58 (12)C17—C16—H16120.1
N3—C5—C4113.66 (11)C15—C16—H16120.1
N4—C6—C13115.30 (12)C16—C17—C18120.41 (16)
N4—C6—C7125.03 (12)C16—C17—H17119.8
C13—C6—C7119.64 (12)C18—C17—H17119.8
C12—C7—C8118.58 (14)C17—C18—C13120.29 (15)
C12—C7—C6119.94 (13)C17—C18—H18119.9
C8—C7—C6121.48 (14)C13—C18—H18119.9
C9—C8—C7120.57 (16)N2—N1—C2113.57 (11)
C9—C8—H8119.7N2—N1—H1N123.2
C7—C8—H8119.7C2—N1—H1N123.2
C10—C9—C8120.26 (17)C4—N2—N1103.52 (11)
C10—C9—H9119.9C5—N3—N4118.48 (11)
C8—C9—H9119.9C5—N3—HN3120.8
C9—C10—C11119.91 (16)N4—N3—HN3120.8
C9—C10—H10120.0C6—N4—N3118.18 (12)
C11—C10—H10120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.022.8740 (15)172
Symmetry code: (i) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.022.8740 (15)172
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationAlegaon, S. G., Alagawadi, K. R., Garg, M. K., Dushyant, K. & Vinod, D. (2014). Bioorg. Chem. 54, 51–59.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746–3753.  Web of Science PubMed CAS Google Scholar
First citationFarag, A. M., Ali, K. A., El-Debss, T. M., Mayhoub, A. S., Amr, A. G., Abdel-Hafez, N. A. & Abdulla, M. M. (2010). Eur. J. Med. Chem. 45, 5887–5898.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKarrouchi, K., Charkaoui, Y., Benlafya, K., Ramli, Y., Taoufik, J., Radi, S. & Ansar, M. (2013). J. Chem. Pharm. Res. 5, 1–6.  CAS Google Scholar
First citationKarrouchi, K., Doudach, L., Chemlal, L., Karim, M., Taoufik, J., Cherrah, Y., Radi, S., Faouzi, M. E. A. & Ansar, M. (2014). Int. J. Pharm. 4, 79–87.  Google Scholar
First citationMert, S., Kasımoğulları, R., İça, T., Çolak, F., Altun, A. & Ok, S. (2014). Eur. J. Med. Chem. 78, 86–96.  CrossRef CAS PubMed Google Scholar
First citationÖzdemir, Z., Karakurt, A., Çali, Ü., Günal, S., Işik, Ş., Şahin, Z. S. & Dalkara, S. (2015). Med. Chem. 11, 41–49.  Google Scholar
First citationPatel, M. V., Bell, R., Majest, S., Henry, R. & Kolasa, T. (2004). J. Org. Chem. 69, 7058–7065.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Zhu, P., Liu, J., Lin, Y., Yao, H., Jiang, J., Ye, W., Wu, X. & Xu, J. (2015). Bioorg. Med. Chem. Lett. 25, 728–732.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds