organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1S,3R,8R,9S,10R)-10-bromo­methyl-2,2-di­chloro-9,10-ep­­oxy-3,7,7-tri­methyl­tri­cyclo­[6.4.0.01,3]dodeca­ne

aLaboratoire de Chimie des Substances Naturelles, Unité Associé au CNRST (URAC16), Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 27 March 2015; accepted 31 March 2015; online 9 April 2015)

The title compound, C16H23BrCl2O, was synthesized in three steps from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from the essential oil of the Atlas cedar (cedrus atlantica). The mol­ecule is built up from two fused six- and seven-membered rings, each linked to a three-membered ring. The six-membered ring has a screw-boat conformation, whereas the seven-membered ring displays a twist-boat conformation. The absolute structure was established unambiguously from anomalous dispersion effects.

1. Related literature

For background to β-himachalene, see: El Haib et al. (2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). For the reactivity of this sesquiterpene and its derivatives, see: El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Benharref et al. (2013[Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933-o934.]); Zaki et al. (2014[Zaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526.]). For the synthesis of the title compound, see: Bimoussa et al. (2013[Bimoussa, A., Auhmani, A., Ait Itto, M. Y., Daran, J.-C. & Auhmani, A. (2013). Acta Cryst. E69, o1692-o1693.]). For their potential anti­fungal activity against the phytopathogen Botrytis cinerea, see: Daoubi et al. (2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927-932.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H23BrCl2O

  • Mr = 382.15

  • Orthorhombic, P 21 21 21

  • a = 8.8748 (5) Å

  • b = 11.2102 (6) Å

  • c = 16.8597 (8) Å

  • V = 1677.34 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.16 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.648, Tmax = 0.746

  • 23384 measured reflections

  • 3419 independent reflections

  • 3135 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.04

  • 3419 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1450 Friedel pairs

  • Absolute structure parameter: 0.012 (9)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

This work is a part of our ongoing program concerning the valorization of the most abundant essential oils in Morocco, such as cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpene hydrocarbons, among which is found the compound β-himachalene (El Haib et al., 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (El jamili et al., 2002; Benharref et al., 2013, Zaki et al.,2014). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). In this work we present the crystal structure of the title compound.

The molecule contains fused six- and seven-membered rings, each linked to a three-membered ring as shown in Fig. 1. The six-membered ring has a screw boat conformation, as indicated by the total puckering amplitude QT = 0.476 (3) Å and spherical polar angle θ = 129.5 (4)° with φ = 263.4 (5)°, whereas the seven-membered ring displays a twist boat conformation with QT = 1.1465 (34) Å,θ = 88.54 (18)°, φ2 = -152.04 (18)° and φ3 = 72.86 (6)°. The dihedral angle between the mean planes trough the six- and seven-membered rings is 57.7 (2)°. The three-membered rings (C2/C3/O4) and (C6–C8) are nearly perpendicular to the six-membered ring (C1–C6) with a dihedral angles of 79.8 (3)° and 84.7 (3)°, respectively. Owing to the presence of Cl and Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as S, R, R, S and R for C atoms at positions 1, 3, 8, 9 and 10, respectively.

Related literature top

For background to β-himachalene, see: El Haib et al. (2011). For the reactivity of this sesquiterpene and its derivatives, see: El jamili et al. (2002); Benharref et al. (2013); Zaki et al. (2014). For the synthesis of the title compound, see: Bimoussa et al. (2013). For their potential antifungal activity against the phytopathogen Botrytis cinerea, see: Daoubi et al. (2004).

Experimental top

A stoichiometric quantity of m-chloroperbenzoic acid (m-CPBA) was added to a 100 ml flask containing a solution of (1S,3R,8R)-10-bromomethyl-2,2-dichloro-3,7,7-trimethyltricyclo[6.4.0.01,3]dodec-9-ene (Bimoussa et al., 2013) (750 mg, 2 mmol) in CH2Cl2 (40 ml). The reaction mixture was stirred at ambient temperature for 2 h, then treated with a 10% solution of sodium hydrogencarbonate. The aqueous phase was extracted with ether and the organic phases were dried and concentrated. Chromatography of the residue on silica (hexane/ethyl acetate, 98:2 v/v) allowed the isolation of the title compound with a yield of 90% (700 mg, 1.8 mmol). The product was recrystallized from cyclohexane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Structure description top

This work is a part of our ongoing program concerning the valorization of the most abundant essential oils in Morocco, such as cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpene hydrocarbons, among which is found the compound β-himachalene (El Haib et al., 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (El jamili et al., 2002; Benharref et al., 2013, Zaki et al.,2014). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). In this work we present the crystal structure of the title compound.

The molecule contains fused six- and seven-membered rings, each linked to a three-membered ring as shown in Fig. 1. The six-membered ring has a screw boat conformation, as indicated by the total puckering amplitude QT = 0.476 (3) Å and spherical polar angle θ = 129.5 (4)° with φ = 263.4 (5)°, whereas the seven-membered ring displays a twist boat conformation with QT = 1.1465 (34) Å,θ = 88.54 (18)°, φ2 = -152.04 (18)° and φ3 = 72.86 (6)°. The dihedral angle between the mean planes trough the six- and seven-membered rings is 57.7 (2)°. The three-membered rings (C2/C3/O4) and (C6–C8) are nearly perpendicular to the six-membered ring (C1–C6) with a dihedral angles of 79.8 (3)° and 84.7 (3)°, respectively. Owing to the presence of Cl and Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as S, R, R, S and R for C atoms at positions 1, 3, 8, 9 and 10, respectively.

For background to β-himachalene, see: El Haib et al. (2011). For the reactivity of this sesquiterpene and its derivatives, see: El jamili et al. (2002); Benharref et al. (2013); Zaki et al. (2014). For the synthesis of the title compound, see: Bimoussa et al. (2013). For their potential antifungal activity against the phytopathogen Botrytis cinerea, see: Daoubi et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(1S,3R,8R,9S,10R)-10-Bromomethyl-2,2-dichloro-9,10-epoxy-3,7,7-trimethyltricyclo[6.4.0.01,3]dodecane top
Crystal data top
C16H23BrCl2OF(000) = 784
Mr = 382.15Dx = 1.513 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3419 reflections
a = 8.8748 (5) Åθ = 2.2–26.4°
b = 11.2102 (6) ŵ = 2.76 mm1
c = 16.8597 (8) ÅT = 296 K
V = 1677.34 (15) Å3Prism, colourless
Z = 40.35 × 0.25 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
3419 independent reflections
Radiation source: fine-focus sealed tube3135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.648, Tmax = 0.746k = 1414
23384 measured reflectionsl = 2114
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.035P)2 + 1.0813P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3419 reflectionsΔρmax = 0.65 e Å3
184 parametersΔρmin = 0.53 e Å3
0 restraintsAbsolute structure: Flack & Bernardinelli (2000), 1450 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (9)
Crystal data top
C16H23BrCl2OV = 1677.34 (15) Å3
Mr = 382.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8748 (5) ŵ = 2.76 mm1
b = 11.2102 (6) ÅT = 296 K
c = 16.8597 (8) Å0.35 × 0.25 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
3419 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3135 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.746Rint = 0.034
23384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.65 e Å3
S = 1.04Δρmin = 0.53 e Å3
3419 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1450 Friedel pairs
184 parametersAbsolute structure parameter: 0.012 (9)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8156 (3)0.2763 (2)0.75464 (16)0.0311 (5)
H10.86580.33650.78750.037*
C20.7910 (3)0.3332 (2)0.67448 (17)0.0349 (6)
H20.88060.34010.64080.042*
C30.6468 (3)0.3276 (2)0.63277 (17)0.0382 (6)
C40.5134 (3)0.2638 (3)0.66859 (18)0.0439 (7)
H4A0.46790.21330.62850.053*
H4B0.43890.32240.68450.053*
C50.5541 (3)0.1874 (3)0.74026 (17)0.0362 (6)
H5A0.46320.16880.76970.043*
H5B0.59760.11280.72210.043*
C60.6652 (3)0.2497 (2)0.79482 (15)0.0286 (5)
C70.6026 (3)0.3367 (2)0.85487 (16)0.0347 (6)
C80.6680 (4)0.2217 (2)0.88460 (16)0.0398 (6)
C90.8207 (4)0.2258 (3)0.9237 (2)0.0570 (9)
H9A0.80750.22810.98080.068*
H9B0.87190.29850.90790.068*
C100.9190 (5)0.1185 (4)0.9020 (3)0.0755 (13)
H10A1.02380.13930.91070.091*
H10B0.89460.05300.93730.091*
C110.9007 (5)0.0760 (3)0.8162 (3)0.0603 (10)
H11A0.79920.04510.81040.072*
H11B0.96930.00980.80810.072*
C120.9274 (3)0.1671 (3)0.7491 (2)0.0457 (7)
C130.5657 (5)0.1268 (3)0.9185 (2)0.0592 (9)
H13A0.54980.14180.97390.089*
H13B0.61160.04990.91180.089*
H13C0.47070.12840.89130.089*
C141.0895 (4)0.2161 (4)0.7539 (3)0.0668 (11)
H14A1.10260.25830.80290.100*
H14B1.10710.26940.71030.100*
H14C1.15970.15110.75140.100*
C150.9119 (4)0.0994 (3)0.6701 (3)0.0586 (10)
H15A0.98020.03290.66970.088*
H15B0.93540.15200.62700.088*
H15C0.81050.07090.66450.088*
C160.6457 (5)0.3478 (3)0.54456 (19)0.0554 (9)
H16A0.72750.40100.53030.067*
H16B0.55170.38540.52930.067*
Br10.66817 (6)0.19765 (4)0.48772 (2)0.07821 (17)
O40.6911 (3)0.43512 (16)0.67456 (12)0.0418 (5)
Cl10.40574 (9)0.36000 (8)0.85958 (5)0.0521 (2)
Cl20.69214 (10)0.47409 (6)0.87514 (5)0.04980 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0274 (12)0.0251 (11)0.0408 (14)0.0013 (10)0.0036 (11)0.0025 (10)
C20.0353 (13)0.0311 (13)0.0383 (14)0.0042 (10)0.0061 (11)0.0017 (11)
C30.0477 (15)0.0347 (14)0.0323 (13)0.0006 (11)0.0016 (12)0.0043 (11)
C40.0345 (14)0.0591 (19)0.0382 (15)0.0083 (13)0.0069 (12)0.0046 (13)
C50.0305 (13)0.0362 (13)0.0418 (15)0.0096 (11)0.0009 (12)0.0039 (12)
C60.0271 (11)0.0265 (11)0.0323 (12)0.0027 (10)0.0045 (11)0.0017 (9)
C70.0353 (13)0.0355 (14)0.0331 (14)0.0013 (11)0.0001 (11)0.0001 (11)
C80.0485 (16)0.0368 (14)0.0341 (14)0.0056 (13)0.0056 (13)0.0077 (11)
C90.064 (2)0.061 (2)0.0459 (18)0.0004 (18)0.0205 (18)0.0138 (15)
C100.075 (3)0.071 (3)0.081 (3)0.017 (2)0.029 (2)0.027 (2)
C110.0554 (19)0.0392 (16)0.086 (3)0.0153 (15)0.009 (2)0.0085 (17)
C120.0330 (15)0.0369 (15)0.067 (2)0.0061 (12)0.0024 (14)0.0027 (14)
C130.076 (3)0.052 (2)0.049 (2)0.0088 (18)0.0071 (18)0.0157 (16)
C140.0316 (16)0.060 (2)0.109 (3)0.0024 (15)0.0107 (18)0.006 (2)
C150.0434 (17)0.0463 (18)0.086 (3)0.0076 (14)0.0107 (18)0.0195 (18)
C160.079 (2)0.0550 (19)0.0326 (15)0.0012 (18)0.0015 (16)0.0008 (14)
Br10.0966 (3)0.0883 (3)0.0497 (2)0.0133 (3)0.0049 (2)0.0260 (2)
O40.0549 (12)0.0313 (9)0.0394 (11)0.0054 (9)0.0052 (10)0.0000 (8)
Cl10.0415 (4)0.0631 (5)0.0516 (5)0.0067 (4)0.0126 (3)0.0000 (4)
Cl20.0638 (5)0.0353 (3)0.0504 (4)0.0044 (3)0.0037 (4)0.0109 (3)
Geometric parameters (Å, º) top
C1—C21.510 (4)C9—C101.531 (6)
C1—C61.527 (4)C9—H9A0.9700
C1—C121.579 (4)C9—H9B0.9700
C1—H10.9800C10—C111.530 (6)
C2—O41.446 (3)C10—H10A0.9700
C2—C31.462 (4)C10—H10B0.9700
C2—H20.9800C11—C121.543 (5)
C3—O41.451 (3)C11—H11A0.9700
C3—C161.504 (4)C11—H11B0.9700
C3—C41.509 (4)C12—C151.538 (5)
C4—C51.524 (4)C12—C141.542 (4)
C4—H4A0.9700C13—H13A0.9600
C4—H4B0.9700C13—H13B0.9600
C5—C61.519 (4)C13—H13C0.9600
C5—H5A0.9700C14—H14A0.9600
C5—H5B0.9700C14—H14B0.9600
C6—C71.512 (4)C14—H14C0.9600
C6—C81.546 (4)C15—H15A0.9600
C7—C81.500 (4)C15—H15B0.9600
C7—Cl21.766 (3)C15—H15C0.9600
C7—Cl11.769 (3)C16—Br11.947 (3)
C8—C91.507 (5)C16—H16A0.9700
C8—C131.511 (4)C16—H16B0.9700
C2—C1—C6110.7 (2)C8—C9—H9A109.1
C2—C1—C12111.4 (2)C10—C9—H9A109.1
C6—C1—C12115.1 (2)C8—C9—H9B109.1
C2—C1—H1106.3C10—C9—H9B109.1
C6—C1—H1106.3H9A—C9—H9B107.8
C12—C1—H1106.3C11—C10—C9114.2 (3)
O4—C2—C359.83 (17)C11—C10—H10A108.7
O4—C2—C1114.9 (2)C9—C10—H10A108.7
C3—C2—C1122.6 (2)C11—C10—H10B108.7
O4—C2—H2115.8C9—C10—H10B108.7
C3—C2—H2115.8H10A—C10—H10B107.6
C1—C2—H2115.8C10—C11—C12118.1 (3)
O4—C3—C259.54 (17)C10—C11—H11A107.8
O4—C3—C16110.9 (2)C12—C11—H11A107.8
C2—C3—C16118.3 (3)C10—C11—H11B107.8
O4—C3—C4114.4 (2)C12—C11—H11B107.8
C2—C3—C4121.0 (2)H11A—C11—H11B107.1
C16—C3—C4117.5 (3)C15—C12—C14107.7 (3)
C3—C4—C5113.4 (2)C15—C12—C11107.1 (3)
C3—C4—H4A108.9C14—C12—C11109.9 (3)
C5—C4—H4A108.9C15—C12—C1112.2 (3)
C3—C4—H4B108.9C14—C12—C1107.9 (2)
C5—C4—H4B108.9C11—C12—C1111.9 (3)
H4A—C4—H4B107.7C8—C13—H13A109.5
C6—C5—C4112.1 (2)C8—C13—H13B109.5
C6—C5—H5A109.2H13A—C13—H13B109.5
C4—C5—H5A109.2C8—C13—H13C109.5
C6—C5—H5B109.2H13A—C13—H13C109.5
C4—C5—H5B109.2H13B—C13—H13C109.5
H5A—C5—H5B107.9C12—C14—H14A109.5
C7—C6—C5117.7 (2)C12—C14—H14B109.5
C7—C6—C1119.5 (2)H14A—C14—H14B109.5
C5—C6—C1112.9 (2)C12—C14—H14C109.5
C7—C6—C858.76 (18)H14A—C14—H14C109.5
C5—C6—C8120.7 (2)H14B—C14—H14C109.5
C1—C6—C8117.4 (2)C12—C15—H15A109.5
C8—C7—C661.77 (18)C12—C15—H15B109.5
C8—C7—Cl2120.7 (2)H15A—C15—H15B109.5
C6—C7—Cl2121.82 (19)C12—C15—H15C109.5
C8—C7—Cl1119.6 (2)H15A—C15—H15C109.5
C6—C7—Cl1119.2 (2)H15B—C15—H15C109.5
Cl2—C7—Cl1107.87 (15)C3—C16—Br1110.8 (2)
C7—C8—C9117.9 (2)C3—C16—H16A109.5
C7—C8—C13119.9 (3)Br1—C16—H16A109.5
C9—C8—C13113.3 (3)C3—C16—H16B109.5
C7—C8—C659.47 (17)Br1—C16—H16B109.5
C9—C8—C6115.9 (3)H16A—C16—H16B108.1
C13—C8—C6120.2 (3)C2—O4—C360.63 (18)
C8—C9—C10112.6 (3)

Experimental details

Crystal data
Chemical formulaC16H23BrCl2O
Mr382.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.8748 (5), 11.2102 (6), 16.8597 (8)
V3)1677.34 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.35 × 0.25 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.648, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
23384, 3419, 3135
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.04
No. of reflections3419
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.53
Absolute structureFlack & Bernardinelli (2000), 1450 Friedel pairs
Absolute structure parameter0.012 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBimoussa, A., Auhmani, A., Ait Itto, M. Y., Daran, J.-C. & Auhmani, A. (2013). Acta Cryst. E69, o1692–o1693.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds