organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 3-phenyl­isoxazole-5-carboxyl­ate

aDepartment of Chemistry, School of Preclinical Medicine, Shanxi Medical University, 56 Xinjian South Road, 030001 Tai Yuan, People's Republic of China, bAffiliated Hospital of Xi'an Medical College, 48 Fenggao West Road, 710077 Xi-An, People's Republic of China, and cDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China
*Correspondence e-mail: syzhang@fmmu.edu.cn

(Received 30 March 2013; accepted 7 April 2013; online 13 April 2013)

In the title compound, C13H13NO3, the isoxazole ring is approximately coplanar with the phenyl ring, the dihedral angle between their planes being 7.37 (19)°. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, generating a ring of graph-set motif R22(10).

Related literature

For the biological activity of isoxazole derivatives, see: Angibaud et al. (2003[Angibaud, P., Bourdrez, X., Devine, A., End, D. W., Freyne, E., Ligny, Y., Muller, P., Mannens, G., Pilatte, I., Poncelet, V., Skrzat, S., Smets, G., Van Dun, J., Van Remoortere, P., Venet, M. & Wouters, W. (2003). Bioorg. Med. Chem. Lett. 13, 1543-1548.]). For the structure of a related compound, see: Yao & Deng (2008[Yao, Z. & Deng, J.-C. (2008). Acta Cryst. E64, o131.]). For the synthesis of 3-phenyl­isoxazole-5-carb­oxy­lic acid, see: Liu et al. (2006[Liu, L.-J., Yong, J.-P., Dai, X.-J., Jia, J., Wang, X.-Z. & Wang, J.-W. (2006). Chem. J. Chin. Univ. 27, 1669-1672.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO3

  • Mr = 231.24

  • Monoclinic, P 21 /n

  • a = 4.6311 (10) Å

  • b = 16.596 (4) Å

  • c = 15.897 (3) Å

  • β = 98.321 (4)°

  • V = 1208.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.36 × 0.28 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.984

  • 6039 measured reflections

  • 2169 independent reflections

  • 1511 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.03

  • 2169 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.37 3.277 (2) 166
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isoxazole derivatives, as useful intermediates in organic synthesis, show widespread biological activities, and are employed as antiviral drugs, antibacteria reagents, fungicide, anti-inflammatory agents, analgesics, antidepressants, anticonvulsants and pesticides (Angibaud et al., 2003). In the molecule of the title compound (Fig. 1), the dihedral angle between the phenyl and the isoxazole rings is 7.37 (19)°. The bond lengths within the isoxazole ring [C7—N1 = 1.306 (2) Å, N1—O1 = 1.402 (18) Å, O1—C9 = 1.345 (2) Å, C9—C8 = 1.327 (2) Å and C8—C7 = 1.409 (2) Å] are in agreement with those reported by Yao & Deng (2008) for 5-amino-3-(4-pyridyl)isoxazole [C7—N1 = 1.316 (18) Å, N1—O1 = 1.429 (14) Å, O1—C9 = 1.353 (17) Å, C9—C8 = 1.368 (19) Å and C8—C7 = 1.400 (19) Å]. In the crystal, centrosymmetrically related molecules are linked into dimers by C—H···O hydrogen bonds (Table 1), generating a ring of graph-set motif < i>R22(10).

Related literature top

For the biological activity of isoxazole derivatives, see: Angibaud et al. (2003). For the structure of a related compound, see: Yao & Deng (2008). For the synthesis of 3-phenylisoxazole-5-carboxylic acid, see: Liu et al. (2006).

Experimental top

3-Phenylisoxazole-5-carboxylic acid (10 mmol, 1.95 g; Liu et al., 2006) was dissolved in 100 ml dichloromethane, then thionyl chloride(12 mmol, 1.43 g)was dropped into the solution and stirred for 20 minutes in ice bath. The solvent was removed under reduced pressure and the mixture was used for the next step without further purification. 2-Propanol (20 mmol, 1.5 ml) was added subsequently and the mixture stirred for 6 h at room temperature. The resulting residue was purified as a white solid (1.96 g, 85% yield). Recrystallization in ethyl acetate gave fine colourless crystals suitable for X-ray study. All chemicals were purchased by Sigma Aldrich Germany.

Refinement top

All H atoms were placed in idealized positions and allowed to ride on the respective parent atom with C—H = 0.93–0.98 Å and with Uiso(H) = of 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

Isoxazole derivatives, as useful intermediates in organic synthesis, show widespread biological activities, and are employed as antiviral drugs, antibacteria reagents, fungicide, anti-inflammatory agents, analgesics, antidepressants, anticonvulsants and pesticides (Angibaud et al., 2003). In the molecule of the title compound (Fig. 1), the dihedral angle between the phenyl and the isoxazole rings is 7.37 (19)°. The bond lengths within the isoxazole ring [C7—N1 = 1.306 (2) Å, N1—O1 = 1.402 (18) Å, O1—C9 = 1.345 (2) Å, C9—C8 = 1.327 (2) Å and C8—C7 = 1.409 (2) Å] are in agreement with those reported by Yao & Deng (2008) for 5-amino-3-(4-pyridyl)isoxazole [C7—N1 = 1.316 (18) Å, N1—O1 = 1.429 (14) Å, O1—C9 = 1.353 (17) Å, C9—C8 = 1.368 (19) Å and C8—C7 = 1.400 (19) Å]. In the crystal, centrosymmetrically related molecules are linked into dimers by C—H···O hydrogen bonds (Table 1), generating a ring of graph-set motif < i>R22(10).

For the biological activity of isoxazole derivatives, see: Angibaud et al. (2003). For the structure of a related compound, see: Yao & Deng (2008). For the synthesis of 3-phenylisoxazole-5-carboxylic acid, see: Liu et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The formation of the title compound.
Isopropyl 3-phenylisoxazole-5-carboxylate top
Crystal data top
C13H13NO3F(000) = 488
Mr = 231.24Dx = 1.271 Mg m3
Dm = 1.270 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1178 reflections
a = 4.6311 (10) Åθ = 2.5–21.2°
b = 16.596 (4) ŵ = 0.09 mm1
c = 15.897 (3) ÅT = 296 K
β = 98.321 (4)°Block, colourless
V = 1208.9 (5) Å30.36 × 0.28 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2169 independent reflections
Radiation source: fine-focus sealed tube1511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 45
Tmin = 0.968, Tmax = 0.984k = 1919
6039 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.0883P]
where P = (Fo2 + 2Fc2)/3
2169 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H13NO3V = 1208.9 (5) Å3
Mr = 231.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.6311 (10) ŵ = 0.09 mm1
b = 16.596 (4) ÅT = 296 K
c = 15.897 (3) Å0.36 × 0.28 × 0.17 mm
β = 98.321 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2169 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1511 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.984Rint = 0.037
6039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.11 e Å3
2169 reflectionsΔρmin = 0.20 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.1576 (4)0.66232 (10)0.15016 (9)0.0630 (5)
O11.0131 (3)0.60739 (8)0.19660 (7)0.0607 (4)
O20.4550 (3)0.46825 (8)0.12822 (8)0.0746 (5)
O30.6627 (3)0.50549 (7)0.25802 (7)0.0576 (4)
C10.9997 (5)0.69977 (13)0.07802 (12)0.0712 (6)
H10.85490.66150.09300.085*
C21.0757 (6)0.75230 (15)0.13884 (14)0.0828 (7)
H20.98020.74960.19440.099*
C31.2896 (6)0.80792 (14)0.11749 (17)0.0844 (7)
H31.33910.84330.15840.101*
C41.4315 (5)0.81193 (13)0.03635 (16)0.0845 (7)
H41.57930.84960.02220.101*
C51.3566 (5)0.76046 (12)0.02457 (14)0.0681 (6)
H51.45410.76360.07990.082*
C61.1380 (4)0.70408 (10)0.00457 (11)0.0521 (5)
C71.0454 (4)0.65230 (10)0.07063 (10)0.0491 (4)
C80.8306 (4)0.59153 (11)0.06221 (10)0.0530 (5)
H80.72130.57280.01240.064*
C90.8187 (4)0.56698 (10)0.14107 (10)0.0492 (5)
C100.6272 (4)0.50799 (11)0.17418 (11)0.0525 (5)
C110.4715 (5)0.45151 (12)0.29747 (12)0.0629 (5)
H110.27880.45010.26270.075*
C120.4454 (7)0.48786 (17)0.38172 (15)0.1041 (10)
H12A0.63420.48960.41580.156*
H12B0.31590.45580.40990.156*
H12C0.36920.54160.37380.156*
C130.6001 (6)0.36909 (14)0.30211 (16)0.0981 (8)
H13A0.61650.35050.24580.147*
H13B0.47650.33310.32800.147*
H13C0.79010.37050.33550.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0788 (12)0.0650 (10)0.0460 (9)0.0149 (9)0.0112 (8)0.0018 (7)
O10.0757 (9)0.0651 (8)0.0408 (7)0.0141 (7)0.0070 (6)0.0003 (6)
O20.0940 (11)0.0756 (9)0.0512 (8)0.0266 (8)0.0007 (8)0.0020 (7)
O30.0695 (9)0.0626 (8)0.0410 (7)0.0099 (7)0.0085 (6)0.0042 (6)
C10.0870 (16)0.0752 (14)0.0524 (12)0.0040 (12)0.0136 (11)0.0074 (11)
C20.1036 (19)0.0902 (17)0.0575 (13)0.0099 (15)0.0219 (13)0.0172 (12)
C30.111 (2)0.0674 (15)0.0847 (18)0.0077 (14)0.0463 (16)0.0227 (13)
C40.1026 (19)0.0696 (15)0.0871 (17)0.0156 (13)0.0332 (15)0.0076 (13)
C50.0797 (15)0.0618 (12)0.0650 (13)0.0042 (11)0.0182 (11)0.0010 (10)
C60.0606 (12)0.0479 (10)0.0505 (11)0.0045 (9)0.0171 (9)0.0010 (8)
C70.0570 (11)0.0483 (10)0.0427 (10)0.0027 (9)0.0095 (8)0.0019 (8)
C80.0630 (12)0.0541 (11)0.0409 (10)0.0005 (9)0.0043 (9)0.0014 (8)
C90.0592 (11)0.0474 (10)0.0402 (10)0.0009 (9)0.0047 (8)0.0036 (8)
C100.0662 (12)0.0493 (10)0.0417 (10)0.0033 (9)0.0068 (9)0.0004 (8)
C110.0712 (13)0.0637 (13)0.0550 (11)0.0105 (10)0.0132 (10)0.0104 (9)
C120.147 (3)0.107 (2)0.0693 (16)0.0330 (18)0.0530 (17)0.0100 (14)
C130.122 (2)0.0687 (15)0.107 (2)0.0054 (15)0.0270 (17)0.0262 (14)
Geometric parameters (Å, º) top
N1—C71.306 (2)C5—H50.9300
N1—O11.4022 (18)C6—C71.468 (2)
O1—C91.345 (2)C7—C81.409 (2)
O2—C101.198 (2)C8—C91.327 (2)
O3—C101.3197 (19)C8—H80.9300
O3—C111.463 (2)C9—C101.469 (3)
C1—C61.377 (3)C11—C131.489 (3)
C1—C21.384 (3)C11—C121.490 (3)
C1—H10.9300C11—H110.9800
C2—C31.361 (3)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.362 (3)C12—H12C0.9600
C3—H30.9300C13—H13A0.9600
C4—C51.373 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.381 (3)
C7—N1—O1105.89 (14)C7—C8—H8127.6
C9—O1—N1107.68 (12)C8—C9—O1110.58 (16)
C10—O3—C11117.22 (15)C8—C9—C10130.77 (17)
C6—C1—C2120.2 (2)O1—C9—C10118.60 (15)
C6—C1—H1119.9O2—C10—O3124.97 (18)
C2—C1—H1119.9O2—C10—C9122.10 (16)
C3—C2—C1120.1 (2)O3—C10—C9112.92 (16)
C3—C2—H2119.9O3—C11—C13108.73 (18)
C1—C2—H2119.9O3—C11—C12105.69 (16)
C2—C3—C4120.2 (2)C13—C11—C12114.28 (19)
C2—C3—H3119.9O3—C11—H11109.3
C4—C3—H3119.9C13—C11—H11109.3
C3—C4—C5120.1 (2)C12—C11—H11109.3
C3—C4—H4120.0C11—C12—H12A109.5
C5—C4—H4120.0C11—C12—H12B109.5
C4—C5—C6120.7 (2)H12A—C12—H12B109.5
C4—C5—H5119.6C11—C12—H12C109.5
C6—C5—H5119.6H12A—C12—H12C109.5
C1—C6—C5118.61 (18)H12B—C12—H12C109.5
C1—C6—C7120.53 (18)C11—C13—H13A109.5
C5—C6—C7120.80 (17)C11—C13—H13B109.5
N1—C7—C8111.06 (15)H13A—C13—H13B109.5
N1—C7—C6120.10 (16)C11—C13—H13C109.5
C8—C7—C6128.77 (16)H13A—C13—H13C109.5
C9—C8—C7104.79 (16)H13B—C13—H13C109.5
C9—C8—H8127.6
C7—N1—O1—C90.11 (18)N1—C7—C8—C90.9 (2)
C6—C1—C2—C30.7 (3)C6—C7—C8—C9176.01 (17)
C1—C2—C3—C40.4 (4)C7—C8—C9—O10.9 (2)
C2—C3—C4—C50.8 (4)C7—C8—C9—C10176.46 (18)
C3—C4—C5—C60.1 (3)N1—O1—C9—C80.68 (19)
C2—C1—C6—C51.4 (3)N1—O1—C9—C10177.06 (15)
C2—C1—C6—C7175.88 (18)C11—O3—C10—O21.7 (3)
C4—C5—C6—C10.9 (3)C11—O3—C10—C9176.98 (15)
C4—C5—C6—C7176.28 (18)C8—C9—C10—O25.0 (3)
O1—N1—C7—C80.5 (2)O1—C9—C10—O2177.82 (17)
O1—N1—C7—C6176.73 (14)C8—C9—C10—O3173.73 (18)
C1—C6—C7—N1173.13 (18)O1—C9—C10—O33.5 (2)
C5—C6—C7—N14.0 (3)C10—O3—C11—C1384.7 (2)
C1—C6—C7—C83.5 (3)C10—O3—C11—C12152.16 (19)
C5—C6—C7—C8179.33 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.373.277 (2)166
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H13NO3
Mr231.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.6311 (10), 16.596 (4), 15.897 (3)
β (°) 98.321 (4)
V3)1208.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.28 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.968, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
6039, 2169, 1511
Rint0.037
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.03
No. of reflections2169
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.373.277 (2)166.4
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (21172262).

References

First citationAngibaud, P., Bourdrez, X., Devine, A., End, D. W., Freyne, E., Ligny, Y., Muller, P., Mannens, G., Pilatte, I., Poncelet, V., Skrzat, S., Smets, G., Van Dun, J., Van Remoortere, P., Venet, M. & Wouters, W. (2003). Bioorg. Med. Chem. Lett. 13, 1543–1548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, L.-J., Yong, J.-P., Dai, X.-J., Jia, J., Wang, X.-Z. & Wang, J.-W. (2006). Chem. J. Chin. Univ. 27, 1669–1672.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, Z. & Deng, J.-C. (2008). Acta Cryst. E64, o131.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds