metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­bromido­[N-(1-di­ethyl­amino-1-oxo-3-phenyl­propan-2-yl)-N′-(pyridin-2-yl)imidazol-2-yl­­idene]palladium(II) di­chloro­methane monosolvate

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Chemical engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: lryang@haut.edu.cn

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 4 June 2019; accepted 24 June 2019; online 15 July 2019)

In the mol­ecule of the title N,N′-disubstituted imidazol-2-yl­idene palladium(II) complex, [PdBr2(C21H24N4O)]·CH2Cl2, the palladium(II) atom adopts a slightly distorted square-planar coordination (r.m.s. deviation = 0.0145 Å), and the five-membered chelate ring is almost planar [maximum displacement = 0.015 (8) Å]. The mol­ecular conformation is enforced by intra­molecular C—H⋯Br hydrogen bonds. In the crystal, complex mol­ecules and di­chloro­methane mol­ecules are linked into a three-dimensional network by C—H⋯O and C—H⋯Br hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-Heterocyclic carbenes (NHCs) have been widely used as ancillary ligands in coordin­ation chemistry and organic catalysis since the successful isolation and characterization of the first stable NHC by Arduengo (Arduengo et al., 1991[Arduengo, A. J. III, Kline, M., Calabrese, J. C. & Davidson, F. (1991). J. Am. Chem. Soc. 113, 9704-9705.]). Chelating NHC metal complexes containing heteroatom donors, such as P, N, O and S, have been synthesized, characterized and employed extensively as catalysts for organic transformations (Ahrens et al., 2006[Ahrens, S., Zeller, A., Taige, M. & Strassner, T. (2006). Organometallics, 25, 5409-5415.]; Bierenstiel & Cross, 2011[Bierenstiel, M. & Cross, E. D. (2011). Coord. Chem. Rev. 255, 574-590.]; Meyer et al., 2012[Meyer, D., Zeller, A. & Strassner, T. (2012). J. Organomet. Chem. 701, 56-61.]; Peris & Crabtree, 2004[Peris, E. & Crabtree, R. H. (2004). Coord. Chem. Rev. 248, 2239-2246.]). Our group has developed an efficient procedure for the synthesis of chiral imidazole derivatives carrying hy­droxy­alkyl or amide functional groups (Mao et al., 2010[Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon, 185, 2418-2425.]). Through simple quaternization by 2-bromo­pyridine or 2-chloro­pyrimidine, hetero-difunctionalized imidazolium salts were obtained. Direct metallation of the hetero-difunctionalized imidazolium salts by Pd(OAc)2 under mild reaction condition produced the CNHC,N-chelating palladium complexes smoothly (Yang et al., 2015[Yang, L., Yuan, J., Mao, P. & Guo, Q. (2015). RSC Adv. 5, 107601-107607.]; Yang, Zhang, Xiao & Mao, 2016[Yang, L., Zhang, W., Xiao, Y. & Mao, P. (2016). ChemistrySelect, 4, 680-684.]; Yang, Zhang, Yuan et al., 2016[Yang, L., Zhang, X., Yuan, J., Xiao, Y. & Mao, P. (2016). J. Organomet. Chem. 818, 179-184.]). As part of our work on the synthesis and application of chiral chelating NHC palladium complexes, we report here the crystal structure of the title N,N′-disubstituted imidazol-2-yl­idene palladium(II) complex.

In the title complex (Fig. 1[link]), the palladium(II) atom adopts a slightly distorted square-planar coordination bonded to C6, N1, Br1, and Br2 (r.m.s. deviation = 0.0145 Å). The Pd1—C6, Pd1—N1, Pd1—Br1 and Pd1—Br2 bond lengths are 1.986 (9), 2.052 (5), 2.4678 (12) and 2.3849 (12) Å, respectively. The five-membered chelate ring (C6/Pd1/N1/C5/N2) is almost planar [maximum displacement = 0.015 (8) Å for atom C5]. The N1—C5—N2—C6 torsion angle is 1.3 (13)°. A pair of intra­molecular C—H⋯Br hydrogen bonds (Table 1[link]) stabilizes the mol­ecular conformation. In the crystal, complex mol­ecules and di­chloro­methane mol­ecules are linked into a three-dimensional network by C—H⋯O and C—H⋯Br hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Br2i 0.93 2.77 3.540 (7) 141
C9—H9⋯Br2 0.98 2.57 3.381 (12) 141
C16—H16⋯Br2 0.93 2.92 3.678 (9) 140
C22—H22A⋯Br1ii 0.97 2.91 3.836 (19) 160
C22—H22B⋯O1iii 0.97 2.46 3.40 (2) 164
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids.

Synthesis and crystallization

A mixture of (S)-N-(1-(di­ethyl­amino)-1-oxo-3-phenyl­propan-2-yl)-N′-(pyridin-2-yl)-1H-imidazolium bromide (1 mmol, 0.43 g) and Pd(OAc)2 (1 mmol, 0.22 g) was stirred in anhydrous di­chloro­methane (10 mL) at room temperature for 12 h. The reaction mixture was then evaporated. Purification of the residue by column chromatography (silica, CH2Cl2/acetone, gradient elution, 15:1–8:1 v/v) produced the title NHC palladium complex as a yellow solid (0.24 g, 39%). Crystallization of the solid from CH2Cl2/hexane (1:1 v/v) afforded the title complex as yellow crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [PdBr2(C21H24N4O)]·CH2Cl2
Mr 699.59
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 17.6670 (4), 12.8871 (3), 11.7476 (3)
V3) 2674.65 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 11.11
Crystal size (mm) 0.33 × 0.17 × 0.07
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.149, 0.607
No. of measured, independent and observed [I > 2σ(I)] reflections 7177, 4332, 3852
Rint 0.039
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.03
No. of reflections 4332
No. of parameters 267
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.44
Absolute structure Flack x determined using 1279 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.009 (13)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dibromido[N-(1-diethylamino-1-oxo-3-phenylpropan-2-yl)-N'-(pyridin-2-yl)imidazol-2-ylidene]palladium(II) dichloromethane monosolvate top
Crystal data top
[PdBr2(C21H24N4O)]·CH2Cl2Dx = 1.737 Mg m3
Mr = 699.59Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2891 reflections
a = 17.6670 (4) Åθ = 3.8–70.6°
b = 12.8871 (3) ŵ = 11.11 mm1
c = 11.7476 (3) ÅT = 293 K
V = 2674.65 (11) Å3, light yellow
Z = 40.33 × 0.17 × 0.07 mm
F(000) = 1376
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
4332 independent reflections
Radiation source: Enhance (Cu) X-ray Source3852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.2312 pixels mm-1θmax = 67.1°, θmin = 4.3°
ω scansh = 1021
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
k = 159
Tmin = 0.149, Tmax = 0.607l = 1214
7177 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.2381P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.03Δρmax = 1.01 e Å3
4332 reflectionsΔρmin = 0.44 e Å3
267 parametersAbsolute structure: Flack x determined using 1279 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.009 (13)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed geometrically and refined using a riding atom approximation, with C–H = 0.93-0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.59851 (6)0.56133 (8)0.49147 (12)0.0705 (3)
Br20.60329 (6)0.82311 (9)0.4899 (2)0.0984 (6)
C50.3460 (3)0.6459 (4)0.4318 (7)0.072 (3)
C40.2814 (3)0.5863 (7)0.4143 (9)0.092 (4)
H40.23520.61850.40050.110*
C30.2860 (4)0.4787 (6)0.4174 (10)0.099 (5)
H30.24280.43890.40560.119*
C20.3550 (5)0.4306 (4)0.4379 (9)0.096 (4)
H20.35810.35860.44000.115*
C10.4196 (4)0.4901 (5)0.4554 (8)0.081 (3)
H10.46580.45800.46920.098*
N10.4151 (3)0.5978 (5)0.4524 (6)0.064 (2)
C60.4184 (5)0.7990 (9)0.4476 (8)0.060 (2)
C70.2929 (7)0.8202 (11)0.4163 (13)0.086 (4)
H70.24230.80420.40260.104*
C80.3227 (7)0.9141 (11)0.4248 (13)0.083 (4)
H80.29660.97660.42030.100*
C90.4565 (7)0.9878 (8)0.4515 (9)0.061 (2)
H90.50080.96410.49440.074*
C100.4826 (9)1.0268 (10)0.3327 (10)0.081 (4)
H10A0.50240.96870.28920.097*
H10B0.43941.05460.29180.097*
C110.5431 (6)1.1098 (6)0.3424 (8)0.083 (4)
C160.6182 (6)1.0813 (6)0.3583 (10)0.104 (5)
H160.63171.01160.35890.125*
C150.6733 (5)1.1572 (10)0.3732 (12)0.145 (9)
H150.72361.13810.38380.174*
C140.6532 (7)1.2614 (9)0.3722 (11)0.124 (7)
H140.69011.31220.38220.149*
C130.5781 (8)1.2899 (5)0.3563 (9)0.114 (6)
H130.56471.35970.35560.137*
C120.5230 (6)1.2141 (7)0.3414 (8)0.096 (5)
H120.47271.23310.33070.116*
C170.4186 (7)1.0784 (8)0.5167 (11)0.069 (3)
C180.4815 (7)1.0208 (10)0.6941 (9)0.074 (3)
H18A0.48200.95240.65970.089*
H18B0.45921.01400.76920.089*
C190.5616 (10)1.0567 (14)0.7076 (17)0.118 (6)
H19A0.58611.05700.63460.177*
H19B0.58811.01050.75790.177*
H19C0.56211.12550.73880.177*
C200.3960 (13)1.1763 (13)0.6898 (12)0.120 (7)
H20A0.34521.18700.66070.144*
H20B0.39211.15790.76960.144*
C210.4391 (16)1.2722 (13)0.679 (2)0.179 (13)
H21A0.45281.28220.60030.269*
H21B0.48401.26790.72420.269*
H21C0.40871.32950.70380.269*
N20.3517 (5)0.7504 (7)0.4316 (8)0.066 (2)
N30.4022 (5)0.9018 (7)0.4421 (8)0.065 (2)
N40.4331 (6)1.0885 (8)0.6254 (8)0.072 (3)
O10.3743 (6)1.1351 (7)0.4652 (7)0.090 (3)
Pd10.50333 (3)0.70009 (5)0.46982 (5)0.0533 (2)
C220.7655 (10)0.3250 (16)0.7695 (17)0.121 (6)
H22A0.80190.33440.83040.146*
H22B0.79340.32250.69840.146*
Cl10.7074 (5)0.4286 (8)0.7666 (10)0.253 (6)
Cl20.7195 (5)0.2046 (6)0.7892 (5)0.186 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0626 (6)0.0614 (6)0.0876 (8)0.0079 (4)0.0037 (6)0.0007 (5)
Br20.0518 (5)0.0620 (6)0.1813 (18)0.0015 (4)0.0171 (9)0.0036 (9)
C50.039 (4)0.099 (8)0.076 (7)0.001 (5)0.012 (5)0.017 (6)
C40.058 (6)0.111 (10)0.107 (10)0.012 (6)0.011 (7)0.037 (9)
C30.072 (7)0.100 (10)0.124 (12)0.028 (7)0.009 (9)0.022 (9)
C20.085 (8)0.087 (9)0.115 (11)0.017 (7)0.009 (9)0.012 (8)
C10.077 (7)0.066 (7)0.101 (9)0.010 (5)0.001 (7)0.002 (6)
N10.047 (4)0.079 (5)0.066 (5)0.002 (4)0.004 (4)0.013 (5)
C60.053 (4)0.065 (6)0.061 (5)0.014 (4)0.001 (4)0.013 (5)
C70.055 (5)0.095 (9)0.109 (9)0.013 (6)0.015 (7)0.024 (8)
C80.061 (6)0.093 (9)0.096 (9)0.017 (6)0.007 (6)0.011 (7)
C90.072 (6)0.056 (5)0.057 (5)0.011 (4)0.003 (5)0.001 (4)
C100.105 (10)0.076 (7)0.062 (6)0.004 (7)0.001 (7)0.000 (5)
C110.123 (11)0.072 (7)0.053 (5)0.011 (7)0.007 (7)0.009 (5)
C160.100 (10)0.094 (10)0.117 (12)0.003 (9)0.023 (10)0.035 (9)
C150.127 (16)0.125 (15)0.18 (2)0.003 (13)0.004 (17)0.065 (15)
C140.153 (18)0.108 (14)0.112 (13)0.026 (13)0.022 (14)0.012 (10)
C130.173 (19)0.064 (8)0.105 (11)0.010 (11)0.020 (12)0.005 (7)
C120.136 (13)0.070 (8)0.083 (7)0.022 (8)0.022 (8)0.013 (6)
C170.069 (6)0.065 (6)0.073 (6)0.011 (5)0.005 (6)0.001 (5)
C180.079 (8)0.088 (8)0.055 (5)0.015 (6)0.005 (5)0.005 (5)
C190.102 (12)0.119 (13)0.133 (15)0.005 (10)0.035 (12)0.031 (11)
C200.180 (19)0.106 (12)0.074 (8)0.056 (13)0.009 (11)0.024 (8)
C210.30 (4)0.072 (11)0.17 (2)0.039 (15)0.06 (2)0.043 (12)
N20.048 (4)0.078 (6)0.072 (5)0.002 (4)0.003 (4)0.011 (5)
N30.059 (4)0.071 (5)0.064 (5)0.009 (4)0.001 (4)0.005 (4)
N40.082 (6)0.073 (6)0.061 (5)0.016 (5)0.009 (5)0.015 (4)
O10.111 (7)0.086 (5)0.072 (5)0.047 (5)0.018 (5)0.008 (4)
Pd10.0455 (3)0.0578 (4)0.0565 (3)0.0016 (3)0.0020 (3)0.0010 (3)
C220.089 (9)0.174 (18)0.101 (11)0.006 (11)0.012 (9)0.031 (12)
Cl10.186 (7)0.284 (10)0.290 (11)0.124 (7)0.111 (8)0.154 (9)
Cl20.210 (7)0.217 (7)0.130 (4)0.105 (7)0.024 (5)0.039 (4)
Geometric parameters (Å, º) top
Br1—Pd12.4678 (12)C11—C121.3900
Br2—Pd12.3849 (12)C16—H160.9300
C5—C41.3900C16—C151.3900
C5—N11.3900C15—H150.9300
C5—N21.350 (11)C15—C141.3900
C4—H40.9300C14—H140.9300
C4—C31.3900C14—C131.3900
C3—H30.9300C13—H130.9300
C3—C21.3900C13—C121.3900
C2—H20.9300C12—H120.9300
C2—C11.3900C17—N41.309 (16)
C1—H10.9300C17—O11.229 (14)
C1—N11.3900C18—H18A0.9700
N1—Pd12.052 (5)C18—H18B0.9700
C6—N21.347 (13)C18—C191.497 (19)
C6—N31.357 (14)C18—N41.464 (15)
C6—Pd11.986 (9)C19—H19A0.9600
C7—H70.9300C19—H19B0.9600
C7—C81.323 (19)C19—H19C0.9600
C7—N21.387 (14)C20—H20A0.9700
C8—H80.9300C20—H20B0.9700
C8—N31.429 (14)C20—C211.46 (3)
C9—H90.9800C20—N41.511 (16)
C9—C101.554 (16)C21—H21A0.9600
C9—C171.549 (14)C21—H21B0.9600
C9—N31.469 (14)C21—H21C0.9600
C10—H10A0.9700C22—H22A0.9700
C10—H10B0.9700C22—H22B0.9700
C10—C111.516 (16)C22—Cl11.684 (19)
C11—C161.3900C22—Cl21.766 (19)
C4—C5—N1120.0C12—C13—H13120.0
N2—C5—C4127.7 (6)C11—C12—H12120.0
N2—C5—N1112.3 (6)C13—C12—C11120.0
C5—C4—H4120.0C13—C12—H12120.0
C3—C4—C5120.0N4—C17—C9118.2 (10)
C3—C4—H4120.0O1—C17—C9118.6 (11)
C4—C3—H3120.0O1—C17—N4123.2 (11)
C4—C3—C2120.0H18A—C18—H18B107.5
C2—C3—H3120.0C19—C18—H18A108.5
C3—C2—H2120.0C19—C18—H18B108.5
C1—C2—C3120.0N4—C18—H18A108.5
C1—C2—H2120.0N4—C18—H18B108.5
C2—C1—H1120.0N4—C18—C19115.2 (13)
C2—C1—N1120.0C18—C19—H19A109.5
N1—C1—H1120.0C18—C19—H19B109.5
C5—N1—Pd1113.4 (4)C18—C19—H19C109.5
C1—N1—C5120.0H19A—C19—H19B109.5
C1—N1—Pd1126.5 (4)H19A—C19—H19C109.5
N2—C6—N3105.3 (9)H19B—C19—H19C109.5
N2—C6—Pd1112.4 (8)H20A—C20—H20B108.0
N3—C6—Pd1142.3 (8)C21—C20—H20A109.4
C8—C7—H7126.7C21—C20—H20B109.4
C8—C7—N2106.6 (11)C21—C20—N4111.3 (17)
N2—C7—H7126.7N4—C20—H20A109.4
C7—C8—H8126.2N4—C20—H20B109.4
C7—C8—N3107.5 (11)C20—C21—H21A109.5
N3—C8—H8126.2C20—C21—H21B109.5
C10—C9—H9109.0C20—C21—H21C109.5
C17—C9—H9109.0H21A—C21—H21B109.5
C17—C9—C10109.2 (9)H21A—C21—H21C109.5
N3—C9—H9109.0H21B—C21—H21C109.5
N3—C9—C10111.7 (9)C5—N2—C7126.3 (9)
N3—C9—C17108.9 (9)C6—N2—C5121.9 (9)
C9—C10—H10A109.3C6—N2—C7111.8 (9)
C9—C10—H10B109.3C6—N3—C8108.7 (10)
H10A—C10—H10B107.9C6—N3—C9126.6 (9)
C11—C10—C9111.7 (9)C8—N3—C9124.7 (10)
C11—C10—H10A109.3C17—N4—C18126.4 (10)
C11—C10—H10B109.3C17—N4—C20118.5 (11)
C16—C11—C10119.8 (8)C18—N4—C20115.1 (10)
C16—C11—C12120.0Br2—Pd1—Br188.10 (4)
C12—C11—C10120.1 (8)N1—Pd1—Br193.58 (18)
C11—C16—H16120.0N1—Pd1—Br2178.31 (18)
C15—C16—C11120.0C6—Pd1—Br1173.4 (3)
C15—C16—H16120.0C6—Pd1—Br298.4 (3)
C16—C15—H15120.0C6—Pd1—N179.9 (4)
C16—C15—C14120.0H22A—C22—H22B107.5
C14—C15—H15120.0Cl1—C22—H22A108.6
C15—C14—H14120.0Cl1—C22—H22B108.6
C13—C14—C15120.0Cl1—C22—Cl2114.8 (10)
C13—C14—H14120.0Cl2—C22—H22A108.6
C14—C13—H13120.0Cl2—C22—H22B108.6
C12—C13—C14120.0
C5—C4—C3—C20.0C16—C15—C14—C130.0
C4—C5—N1—C10.0C15—C14—C13—C120.0
C4—C5—N1—Pd1177.8 (5)C14—C13—C12—C110.0
C4—C5—N2—C6178.7 (8)C12—C11—C16—C150.0
C4—C5—N2—C71.6 (16)C17—C9—C10—C1163.9 (13)
C4—C3—C2—C10.0C17—C9—N3—C6143.5 (10)
C3—C2—C1—N10.0C17—C9—N3—C836.9 (15)
C2—C1—N1—C50.0C19—C18—N4—C1795.2 (16)
C2—C1—N1—Pd1177.5 (6)C19—C18—N4—C2086.2 (17)
N1—C5—C4—C30.0C21—C20—N4—C1785 (2)
N1—C5—N2—C61.3 (13)C21—C20—N4—C1896.5 (16)
N1—C5—N2—C7178.4 (11)N2—C5—C4—C3179.9 (9)
C7—C8—N3—C62.1 (16)N2—C5—N1—C1180.0 (8)
C7—C8—N3—C9177.6 (11)N2—C5—N1—Pd12.1 (8)
C8—C7—N2—C5178.6 (11)N2—C6—N3—C81.4 (13)
C8—C7—N2—C61.1 (16)N2—C6—N3—C9178.3 (9)
C9—C10—C11—C1682.4 (12)N2—C7—C8—N31.9 (16)
C9—C10—C11—C1294.2 (11)N3—C6—N2—C5179.9 (9)
C9—C17—N4—C181.1 (19)N3—C6—N2—C70.2 (13)
C9—C17—N4—C20179.7 (13)N3—C9—C10—C11175.6 (9)
C10—C9—C17—N4139.3 (12)N3—C9—C17—N498.5 (12)
C10—C9—C17—O143.3 (15)N3—C9—C17—O179.0 (13)
C10—C9—N3—C695.8 (12)O1—C17—N4—C18176.2 (12)
C10—C9—N3—C883.8 (14)O1—C17—N4—C202 (2)
C10—C11—C16—C15176.6 (9)Pd1—C6—N2—C50.3 (13)
C10—C11—C12—C13176.6 (9)Pd1—C6—N2—C7180.0 (9)
C11—C16—C15—C140.0Pd1—C6—N3—C8178.9 (10)
C16—C11—C12—C130.0Pd1—C6—N3—C91.4 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Br2i0.932.773.540 (7)141
C9—H9···Br20.982.573.381 (12)141
C16—H16···Br20.932.923.678 (9)140
C22—H22A···Br1ii0.972.913.836 (19)160
C22—H22B···O1iii0.972.463.40 (2)164
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+3/2, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance.

Funding information

Funding for this research was provided by: the Natural Science Foundation of Henan Province Department of Education (grant No. 18A150004); the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (grant No. 2017RCJH08).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAhrens, S., Zeller, A., Taige, M. & Strassner, T. (2006). Organometallics, 25, 5409–5415.  Web of Science CSD CrossRef CAS Google Scholar
First citationArduengo, A. J. III, Kline, M., Calabrese, J. C. & Davidson, F. (1991). J. Am. Chem. Soc. 113, 9704–9705.  CSD CrossRef CAS Web of Science Google Scholar
First citationBierenstiel, M. & Cross, E. D. (2011). Coord. Chem. Rev. 255, 574–590.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon, 185, 2418–2425.  Web of Science CrossRef CAS Google Scholar
First citationMeyer, D., Zeller, A. & Strassner, T. (2012). J. Organomet. Chem. 701, 56–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeris, E. & Crabtree, R. H. (2004). Coord. Chem. Rev. 248, 2239–2246.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, L., Yuan, J., Mao, P. & Guo, Q. (2015). RSC Adv. 5, 107601–107607.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, L., Zhang, W., Xiao, Y. & Mao, P. (2016). ChemistrySelect, 4, 680–684.  Web of Science CSD CrossRef Google Scholar
First citationYang, L., Zhang, X., Yuan, J., Xiao, Y. & Mao, P. (2016). J. Organomet. Chem. 818, 179–184.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds