organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetra­hydro­pyrimidin-5-aminium sulfate monohydrate

CROSSMARK_Color_square_no_text.svg

aInstitute of Inorganic and Analytical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 7, Frankfurt am Main, Hessen, 60438, Germany
*Correspondence e-mail: tapmeyer@chemie.uni-frankfurt.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 24 April 2019; accepted 13 May 2019; online 17 May 2019)

The title compound, C4H9N5O2+·SO42−·H2O, is the monohydrate of the commercially available compound `C4H7N5O·H2SO4·xH2O'. It is obtained by reprecipitation of C4H7N5O·H2SO4·xH2O from dilute sodium hydroxide solution with dilute sulfuric acid. The crystal structure of anhydrous 2,4,5-tri­amino-1,6-di­hydro­pyrimidin-6-one sulfate is known, although called by the authors 5-amminium-6-amino-isocytosinium sulfate [Bieri et al. (1993[Bieri, J. H., Prewo, R. & Linden, A. (1993). Private communication (refcode HACDEU). CCDC, Cambridge, England]). Private communication (refcode HACDEU). CCDC, Cambridge, England]. In the structure, the sulfate group is deprotonated, whereas one of the amino groups is protonated (R2C—NH3+) and one is rearranged to a protonated imine group (R2C=NH2+). This arrangement is very similar to the known crystal structure of the anhydrate. Several tautomeric forms of the investigated mol­ecule are possible, which leads to questionable proton attributions. The measured data allowed the location of all hydrogen atoms from the residual electron density. In the crystal, ions and water mol­ecules are linked into a three-dimensional network by N—H⋯O and O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2,4,5-Tri­amino-1,6-di­hydro­pyrimidin-6-one (also called 2,4,5-tri­amino-6-hy­droxy­pyrimidine sulfate) and/or its tautomer 2,4,5-tri­amino-6-hy­droxy­pyrimidine are relevant starting materials for either very basic (Traube, 1900[Traube, W. (1900). Ber. Dtsch. Chem. Ges. 33, 1371-1383.]) or more advanced organic syntheses, including natural materials such as butterfly-wing pigments (Purrmann, 1940[Purrmann, R. (1940). Justus Liebigs Ann. Chem. 544, 182-190.]) and potential novel anti­viral lead structures (Abbas et al., 2017[Abbas, Z. A. A., Abu-Mejdad, N. M. J., Atwan, Z. W. & Al-Masoudi, N. A. (2017). J. Heterocycl. Chem. 54, 895-903.]). The structure of the monohydrate form is herewith elucidated and confirms the protonation of the known structure (CSD refcode: HACDEU; Bieri et al., 1993[Bieri, J. H., Prewo, R. & Linden, A. (1993). Private communication (refcode HACDEU). CCDC, Cambridge, England]).

The title compound crystallizes in the triclinic space group P[\overline{1}]. The asymmetric unit is composed of one organic dication ([C4H9N5O]2+), one sulfate anion and one water mol­ecule (Fig. 1[link]). The present tautomer is the 2,4,5-tri­amino-1,6-di­hydro­pyrimidin-6-one. The mol­ecule is almost planar [r.m.s. deviation = 0.026 Å, maximum deviation 0.046 (4) Å for N13], except for the amino group H atoms.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

The title compound shows a layered structure with the most polar compartments oriented in the (100) plane (Fig. 2[link]). Within the layers, the dicationic mol­ecules form hydrogen bonds to the water mol­ecules and to the sulfate dianions. The layers are inter­linked by hydrogen bonds between the sulfate dianion and the organic dication (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8A⋯O4i 0.89 2.46 3.113 (4) 131
N8—H8A⋯O5i 0.89 1.99 2.827 (4) 157
N8—H8B⋯O3ii 0.89 1.94 2.788 (4) 159
N8—H8C⋯O5iii 0.89 2.13 2.942 (4) 152
N9—H9⋯O4iv 0.82 (4) 1.93 (4) 2.739 (5) 168 (4)
N10—H10⋯O2 0.88 (4) 1.87 (4) 2.677 (4) 152 (3)
N10—H10⋯O4 0.88 (4) 2.58 (5) 3.329 (4) 143 (4)
N11—H11A⋯O2 0.80 (5) 2.56 (7) 3.106 (6) 126 (5)
N11—H11A⋯OW1v 0.80 (5) 2.29 (5) 2.956 (4) 142 (5)
N11—H11B⋯O3iv 0.89 (6) 2.00 (6) 2.845 (6) 158 (5)
N13—H13A⋯OW1ii 0.98 (6) 1.98 (7) 2.924 (5) 161 (5)
N13—H13B⋯O4 0.91 (5) 2.10 (5) 2.961 (4) 156 (5)
OW1—HW12⋯O2 0.96 (6) 2.10 (6) 2.798 (4) 128 (5)
OW1—HW11⋯OW1vi 0.96 (3) 2.59 (5) 3.390 (5) 141 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z+1; (iv) x, y-1, z; (v) -x+1, -y+1, -z; (vi) -x+2, -y+1, -z.
[Figure 2]
Figure 2
Partial packing diagram of the title compound viewed along the a axis.

Powder data confirmed the phase identity of the single crystals with experimentally obtained bulk material. Furthermore, a commercial sample of C4H7N5O·H2SO4·xH2O could be qu­anti­tatively analyzed by Rietveld refinement with TOPAS (Coelho, 2018[Coelho, A. A. (2018). J. Appl. Cryst. 51, 210-218.]; Rietveld, 2010[Rietveld, H. M. (2010). Z. Kristallogr. 225, 545-547.]), resulting in a composition of 76.4 (3)% of the known anhydrate phase and 23.6 (3)% of the monohydrate described in this paper (Fig. 3[link]). Since the monohydrate is a yellow solid and the anhydrous form rather colorless, the brown color of the commercial sample could be attributed to minor (and probably amorphous) impurities.

[Figure 3]
Figure 3
X-ray powder diagrams of (from top to bottom) the known anhydrous title compound (simulated, dark red), the vacuum-dried title compound (red), the commercial sample (black), the title compound (blue) and the pattern simulated from the title compound's single-crystal structure (dark blue).

Synthesis and crystallization

5 g (∼20 mmol) of brown 2,4,5-tri­amino-6-hy­droxy­pyrimidine sulfate (C4H7N5OH2·SO4·xH2O) as purchased from TCI (purity > 90.0%) were dissolved under stirring at 70°C in 100 ml of water with 2 g of sodium hydroxide (∼50 mmol). The resulting reddish orange solution (with a pH of about 9–10) was filtered into a solution of 2.6 g of H2SO4 (96%, 25 mmol) in 900 ml water. The instantaneously formed red-to-brown aggregates were left to settle down for two h and the suspension was then filtered. The yellow filtrate was left at room temperature overnight. The formed pale-yellow crystals of the title compound were filtered off on a nutsch flask. The obtained yield for one purification cycle was about 15%. For efficiency, the filtrate can be boiled down and the brown solid precipitate can be reused in the next batch.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C4H9N5O2+·SO42−·H2O
Mr 257.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.0128 (7), 7.9882 (8), 9.0732 (9)
α, β, γ (°) 74.121 (4), 86.734 (4), 79.290 (4)
V3) 480.36 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.34
Crystal size (mm) 0.2 × 0.15 × 0.1
 
Data collection
Diffractometer Siemens Bruker CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.526, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 20827, 1720, 1599
Rint 0.051
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.281, 1.40
No. of reflections 1720
No. of parameters 179
No. of restraints 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −1.04
Computer programs: APEX3 (Bruker, 2012[Bruker (2012). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

X-ray powder diffraction data were recorded at room temperature in transmission geometry on a Stoe Stadi-P diffractometer equipped with a curved Ge(111) primary monochromator and a linear position-sensitive detector, using Cu K α1 radiation (λ =1.5406 Å). Samples were rotated in 0.7 mm glass capillaries during measurement.

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2012); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetrahydropyrimidin-5-aminium sulfate monohydrate top
Crystal data top
C4H9N5O2+·SO42·H2OZ = 2
Mr = 257.24F(000) = 268
Triclinic, P1Dx = 1.778 Mg m3
a = 7.0128 (7) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.9882 (8) ÅCell parameters from 9522 reflections
c = 9.0732 (9) Åθ = 2.5–69.4°
α = 74.121 (4)°µ = 3.34 mm1
β = 86.734 (4)°T = 296 K
γ = 79.290 (4)°Block, pale yellow
V = 480.36 (8) Å30.2 × 0.15 × 0.1 mm
Data collection top
Siemens Bruker CCD
diffractometer
1599 reflections with I > 2σ(I)
Radiation source: microfocus tubeRint = 0.051
ω and Phi scansθmax = 71.1°, θmin = 5.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 88
Tmin = 0.526, Tmax = 0.753k = 99
20827 measured reflectionsl = 1010
1720 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.080 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.281(Δ/σ)max = 0.002
S = 1.40Δρmax = 0.63 e Å3
1720 reflectionsΔρmin = 1.04 e Å3
179 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
20 restraintsExtinction coefficient: 0.081 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms could be located by difference Fourier synthesis. Subsequently, H atoms bound to N atoms were refined using a riding model with the amino N–H distances constrained to 0.85 Å and the imino N–H distances constrained to 0.88 Å. For the H atoms of the amino groups, free rotation about their local threefold axis was allowed and their isotropic displacement parameters were set to Uiso(H) = 1.5Ueq(N). The coordinates of the H atoms of the water molecules were refined with the O–H distances restrained to 0.84 (1) Å and the H–H distance restrained to 1.4 (1) Å. Their isotropic displacement parameters were coupled to the equivalent isotropic displacement parameters of the O atoms, with Uiso(H) = 1.2Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29190 (9)0.72804 (10)0.15928 (8)0.0303 (6)
O20.3943 (4)0.5471 (3)0.1724 (3)0.0397 (8)
O30.4276 (3)0.8537 (4)0.1119 (3)0.0389 (8)
O40.2063 (4)0.7360 (4)0.3111 (3)0.0430 (8)
O50.1362 (4)0.7771 (4)0.0452 (3)0.0418 (8)
O60.2171 (5)0.1764 (4)0.6728 (3)0.0520 (9)
N80.2102 (4)0.0973 (4)0.8136 (3)0.0338 (8)
H8A0.0981600.1604610.8337260.051*
H8B0.3078060.1330690.8478100.051*
H8C0.2119360.0166270.8599760.051*
N90.2573 (4)0.0009 (4)0.4352 (3)0.0354 (8)
H90.237 (4)0.085 (5)0.410 (4)0.028 (10)*
N100.2669 (4)0.2969 (4)0.3967 (3)0.0369 (8)
H100.2779 (14)0.401 (6)0.335 (6)0.076 (17)*
N110.2988 (6)0.1773 (6)0.1914 (4)0.0481 (10)
H11A0.325 (7)0.261 (8)0.128 (6)0.055 (15)*
H11B0.325 (7)0.092 (7)0.143 (6)0.053 (14)*
C120.2422 (5)0.2849 (5)0.5513 (4)0.0340 (9)
N130.2327 (5)0.4357 (4)0.5902 (4)0.0412 (9)
H13A0.200 (8)0.434 (8)0.697 (7)0.073 (17)*
H13B0.225 (7)0.546 (7)0.525 (6)0.054 (13)*
C140.2309 (4)0.1216 (5)0.6496 (4)0.0310 (9)
C150.2338 (5)0.0280 (5)0.5956 (4)0.0348 (9)
C160.2728 (5)0.1591 (5)0.3394 (4)0.0353 (9)
OW10.7873 (5)0.5365 (4)0.0944 (3)0.0496 (9)
HW120.687 (8)0.467 (8)0.119 (11)0.16 (4)*
HW110.916 (4)0.473 (7)0.089 (8)0.11 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0287 (8)0.0328 (8)0.0267 (8)0.0044 (5)0.0017 (4)0.0048 (5)
O20.0407 (14)0.0326 (15)0.0406 (14)0.0032 (11)0.0047 (10)0.0041 (11)
O30.0345 (13)0.0414 (15)0.0413 (15)0.0126 (11)0.0060 (11)0.0094 (11)
O40.0493 (16)0.0475 (17)0.0340 (14)0.0118 (12)0.0090 (12)0.0135 (13)
O50.0341 (13)0.0532 (18)0.0351 (14)0.0035 (11)0.0040 (10)0.0090 (12)
O60.075 (2)0.0427 (18)0.0351 (15)0.0137 (15)0.0071 (13)0.0042 (13)
N80.0305 (14)0.0418 (18)0.0259 (15)0.0051 (12)0.0006 (11)0.0046 (13)
N90.0453 (16)0.0334 (18)0.0261 (16)0.0069 (13)0.0025 (12)0.0063 (13)
N100.0466 (17)0.0348 (18)0.0274 (16)0.0073 (13)0.0027 (12)0.0056 (13)
N110.070 (2)0.043 (2)0.0274 (16)0.0072 (17)0.0056 (15)0.0061 (17)
C120.0307 (15)0.040 (2)0.0272 (17)0.0040 (14)0.0026 (13)0.0050 (15)
N130.061 (2)0.0304 (18)0.0309 (16)0.0055 (14)0.0007 (14)0.0073 (13)
C140.0297 (15)0.0329 (19)0.0258 (17)0.0026 (13)0.0013 (12)0.0018 (14)
C150.0351 (16)0.035 (2)0.0270 (17)0.0000 (14)0.0019 (13)0.0009 (14)
C160.0362 (17)0.040 (2)0.0274 (16)0.0037 (14)0.0023 (13)0.0074 (15)
OW10.0542 (18)0.0508 (19)0.0437 (17)0.0107 (14)0.0046 (14)0.0125 (14)
Geometric parameters (Å, º) top
S1—O21.466 (3)N10—C121.382 (4)
S1—O51.471 (2)N10—H100.88 (4)
S1—O31.473 (2)N11—C161.316 (5)
S1—O41.484 (3)N11—H11A0.80 (6)
O6—C151.223 (5)N11—H11B0.89 (5)
N8—C141.449 (4)C12—N131.335 (5)
N8—H8A0.8900C12—C141.377 (5)
N8—H8B0.8900N13—H13A0.98 (6)
N8—H8C0.8900N13—H13B0.91 (5)
N9—C161.343 (5)C14—C151.407 (5)
N9—C151.415 (4)OW1—HW120.953 (10)
N9—H90.82 (3)OW1—HW110.954 (10)
N10—C161.333 (5)
O2—S1—O5110.53 (16)C16—N11—H11B128 (3)
O2—S1—O3110.29 (15)H11A—N11—H11B102 (5)
O5—S1—O3108.68 (14)N13—C12—C14126.4 (3)
O2—S1—O4108.20 (15)N13—C12—N10115.6 (3)
O5—S1—O4109.32 (14)C14—C12—N10118.0 (3)
O3—S1—O4109.81 (14)C12—N13—H13A117 (4)
C14—N8—H8A109.5C12—N13—H13B126 (3)
C14—N8—H8B109.5H13A—N13—H13B115 (4)
H8A—N8—H8B109.5C12—C14—C15121.8 (3)
C14—N8—H8C109.5C12—C14—N8121.3 (3)
H8A—N8—H8C109.5C15—C14—N8116.9 (3)
H8B—N8—H8C109.5O6—C15—C14126.6 (3)
C16—N9—C15123.3 (3)O6—C15—N9118.4 (3)
C16—N9—H9125 (3)C14—C15—N9115.0 (3)
C15—N9—H9110 (3)N11—C16—N10120.3 (4)
C16—N10—C12122.8 (3)N11—C16—N9120.6 (4)
C16—N10—H10120 (4)N10—C16—N9119.0 (3)
C12—N10—H10117 (4)HW12—OW1—HW11116 (5)
C16—N11—H11A128 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O4i0.892.463.113 (4)131
N8—H8A···O5i0.891.992.827 (4)157
N8—H8B···O3ii0.891.942.788 (4)159
N8—H8C···O5iii0.892.132.942 (4)152
N9—H9···O4iv0.82 (4)1.93 (4)2.739 (5)168 (4)
N10—H10···O20.88 (4)1.87 (4)2.677 (4)152 (3)
N10—H10···O40.88 (4)2.58 (5)3.329 (4)143 (4)
N11—H11A···O20.80 (5)2.56 (7)3.106 (6)126 (5)
N11—H11A···OW1v0.80 (5)2.29 (5)2.956 (4)142 (5)
N11—H11B···O3iv0.89 (6)2.00 (6)2.845 (6)158 (5)
N13—H13A···OW1ii0.98 (6)1.98 (7)2.924 (5)161 (5)
N13—H13B···O40.91 (5)2.10 (5)2.961 (4)156 (5)
OW1—HW12···O20.96 (6)2.10 (6)2.798 (4)128 (5)
OW1—HW11···OW1vi0.96 (3)2.59 (5)3.390 (5)141 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z+1; (iv) x, y1, z; (v) x+1, y+1, z; (vi) x+2, y+1, z.
 

Acknowledgements

The authors wish to express their gratitude to Edith Alig (Goethe-University), who provided us with the X-ray powder measurements, and to Wilhelm Maximilian Hützler, who helped with the inter­pretation of the single-crystal data.

References

First citationAbbas, Z. A. A., Abu-Mejdad, N. M. J., Atwan, Z. W. & Al-Masoudi, N. A. (2017). J. Heterocycl. Chem. 54, 895–903.  Web of Science CrossRef CAS Google Scholar
First citationBieri, J. H., Prewo, R. & Linden, A. (1993). Private communication (refcode HACDEU). CCDC, Cambridge, England  Google Scholar
First citationBruker (2012). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCoelho, A. A. (2018). J. Appl. Cryst. 51, 210–218.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPurrmann, R. (1940). Justus Liebigs Ann. Chem. 544, 182–190.  CrossRef CAS Google Scholar
First citationRietveld, H. M. (2010). Z. Kristallogr. 225, 545–547.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTraube, W. (1900). Ber. Dtsch. Chem. Ges. 33, 1371–1383.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds