organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-2,2-di­phenyl­acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 July 2012; accepted 20 July 2012; online 25 July 2012)

In the title compound, C20H16ClNO, an S(6) ring motif is formed via an intra­molecular C—H⋯O hydrogen bond. The chloro-substituted benzene ring is almost perpendicular to the benzene rings, forming dihedral angles of 87.33 (9) and 88.69 (9)°. The dihedral angle between the benzene rings is 87.17 (9)°. In the crystal, mol­ecules are linked into chains parallel to the c axis by inter­molecular N—H⋯O hydrogen bonds. The crystal packing also features weak C—H⋯π inter­actions involving the chloro-substituted ring.

Related literature

For related structures, see: Fun et al. (2012a[Fun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1316-o1317.],b[Fun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o1287-o1288.],c[Fun, H.-K., Ooi, C. W., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012c). Acta Cryst. E68, o1312-o1313.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16ClNO

  • Mr = 321.79

  • Monoclinic, P 21 /c

  • a = 10.2147 (2) Å

  • b = 17.8203 (4) Å

  • c = 9.5730 (2) Å

  • β = 114.019 (1)°

  • V = 1591.68 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.49 × 0.27 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.954

  • 14326 measured reflections

  • 3639 independent reflections

  • 3091 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.103

  • S = 1.09

  • 3639 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.84 (2) 2.07 (2) 2.8598 (19) 157 (2)
C1—H1A⋯O1 0.95 2.58 3.202 (3) 123
C4—H4ACg1ii 0.95 2.93 3.415 (2) 113
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the synthesis of amides (Fun et al., 2012a,b,c) we report herein the crystal structure of the title compound.

In the title compound, Fig. 1, an S(6) ring motif (Bernstein et al., 1995) is formed via intramolecular C1—H1A···O1 hydrogen bond (Table 1). The chloro-substituted benzene ring (C15–C20) is almost perpendicular to the benzene rings (C1–C6, C7–C12) forming dihedral angles of 87.33 (9) and 88.69 (9)°, respectively. The dihedral angle formed by the benzene rings is 87.17 (9)°. Bond lengths (Allen et al., 1987) and angles are within the normal ranges. In the crystal packing (Fig. 2), the molecules are linked into chains parallel the c axis by intermolecular N1—H1N1···O1 hydrogen bonds (Table 1). The crystal packing is further stabilized by weak C—H···π interactions (Table 1) involving the chloro-substituted ring.

Related literature top

For related structures, see: Fun et al. (2012a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Diphenylacetic acid (0.212 g, 1 mmol), 4-chloroaniline (0.127 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Single crystals were grown from N,N-dimethylformamide by the slow evaporation method. M.p.: 463–465 K.

Refinement top

The N-bound H atom was located in a difference Fourier map and was refined freely [N–H = 0.84 (2) Å]. The remaining H atoms were located geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.95 Å].

Structure description top

In continuation of our work on the synthesis of amides (Fun et al., 2012a,b,c) we report herein the crystal structure of the title compound.

In the title compound, Fig. 1, an S(6) ring motif (Bernstein et al., 1995) is formed via intramolecular C1—H1A···O1 hydrogen bond (Table 1). The chloro-substituted benzene ring (C15–C20) is almost perpendicular to the benzene rings (C1–C6, C7–C12) forming dihedral angles of 87.33 (9) and 88.69 (9)°, respectively. The dihedral angle formed by the benzene rings is 87.17 (9)°. Bond lengths (Allen et al., 1987) and angles are within the normal ranges. In the crystal packing (Fig. 2), the molecules are linked into chains parallel the c axis by intermolecular N1—H1N1···O1 hydrogen bonds (Table 1). The crystal packing is further stabilized by weak C—H···π interactions (Table 1) involving the chloro-substituted ring.

For related structures, see: Fun et al. (2012a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
N-(4-Chlorophenyl)-2,2-diphenylacetamide top
Crystal data top
C20H16ClNOF(000) = 672
Mr = 321.79Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8307 reflections
a = 10.2147 (2) Åθ = 2.2–32.2°
b = 17.8203 (4) ŵ = 0.24 mm1
c = 9.5730 (2) ÅT = 100 K
β = 114.019 (1)°Block, colourless
V = 1591.68 (6) Å30.49 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3639 independent reflections
Radiation source: fine-focus sealed tube3091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.890, Tmax = 0.954k = 2123
14326 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.4338P]
where P = (Fo2 + 2Fc2)/3
3639 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H16ClNOV = 1591.68 (6) Å3
Mr = 321.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2147 (2) ŵ = 0.24 mm1
b = 17.8203 (4) ÅT = 100 K
c = 9.5730 (2) Å0.49 × 0.27 × 0.19 mm
β = 114.019 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3639 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3091 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.954Rint = 0.028
14326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.30 e Å3
3639 reflectionsΔρmin = 0.28 e Å3
212 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.15388 (5)0.49276 (3)1.29695 (5)0.02582 (13)
O10.61313 (13)0.26955 (7)0.78711 (13)0.0207 (3)
N10.64271 (15)0.29804 (8)1.03055 (16)0.0164 (3)
H1N10.614 (2)0.2863 (12)1.098 (3)0.027 (6)*
C10.2968 (2)0.32265 (11)0.7336 (2)0.0228 (4)
H1A0.37610.34180.71690.027*
C20.1669 (2)0.36130 (12)0.6756 (2)0.0315 (5)
H2A0.15780.40640.61940.038*
C30.0508 (2)0.33385 (12)0.6999 (3)0.0352 (5)
H3A0.03770.36020.66090.042*
C40.0645 (2)0.26804 (12)0.7810 (2)0.0310 (5)
H4A0.01490.24910.79770.037*
C50.19353 (19)0.22950 (11)0.8381 (2)0.0237 (4)
H5A0.20170.18420.89320.028*
C60.31158 (18)0.25666 (10)0.81530 (19)0.0179 (4)
C70.37110 (18)0.12810 (10)0.6510 (2)0.0182 (4)
H7A0.31310.16760.59050.022*
C80.37547 (19)0.05950 (10)0.5837 (2)0.0211 (4)
H8A0.32020.05250.47740.025*
C90.45962 (19)0.00140 (10)0.6702 (2)0.0213 (4)
H9A0.46220.04530.62350.026*
C100.54027 (19)0.01183 (10)0.8258 (2)0.0206 (4)
H10A0.59840.02770.88590.025*
C110.53563 (18)0.08021 (10)0.8931 (2)0.0184 (4)
H11A0.59070.08700.99960.022*
C120.45162 (17)0.13905 (10)0.80713 (19)0.0158 (3)
C130.45186 (17)0.21313 (10)0.88570 (18)0.0156 (3)
H13A0.46690.20090.99310.019*
C140.57806 (17)0.26222 (10)0.89552 (19)0.0155 (3)
C150.76050 (17)0.34768 (10)1.08061 (19)0.0160 (3)
C160.84756 (18)0.36106 (10)1.0026 (2)0.0192 (4)
H16A0.82520.33910.90520.023*
C170.96742 (18)0.40692 (10)1.0687 (2)0.0206 (4)
H17A1.02800.41581.01700.025*
C180.99832 (18)0.43946 (10)1.2094 (2)0.0199 (4)
C190.90983 (19)0.42853 (10)1.2855 (2)0.0209 (4)
H19A0.93070.45211.38120.025*
C200.79109 (18)0.38303 (10)1.2206 (2)0.0193 (4)
H20A0.72950.37571.27170.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0203 (2)0.0244 (2)0.0292 (3)0.00523 (17)0.00640 (18)0.00464 (19)
O10.0268 (6)0.0253 (7)0.0134 (6)0.0066 (5)0.0119 (5)0.0035 (5)
N10.0188 (7)0.0221 (8)0.0115 (7)0.0028 (6)0.0095 (6)0.0009 (6)
C10.0239 (9)0.0212 (9)0.0236 (9)0.0012 (7)0.0100 (7)0.0002 (8)
C20.0332 (11)0.0235 (10)0.0336 (12)0.0061 (8)0.0093 (9)0.0002 (9)
C30.0239 (10)0.0314 (12)0.0446 (13)0.0058 (8)0.0080 (9)0.0130 (10)
C40.0225 (9)0.0328 (11)0.0396 (12)0.0054 (8)0.0148 (9)0.0146 (10)
C50.0244 (9)0.0228 (10)0.0262 (10)0.0050 (7)0.0126 (8)0.0062 (8)
C60.0197 (8)0.0191 (9)0.0154 (8)0.0015 (7)0.0078 (7)0.0064 (7)
C70.0217 (8)0.0189 (9)0.0155 (8)0.0005 (7)0.0090 (7)0.0022 (7)
C80.0264 (9)0.0232 (10)0.0154 (8)0.0031 (7)0.0101 (7)0.0035 (7)
C90.0268 (9)0.0177 (9)0.0248 (9)0.0017 (7)0.0161 (8)0.0033 (7)
C100.0228 (9)0.0185 (9)0.0234 (9)0.0021 (7)0.0125 (7)0.0046 (7)
C110.0202 (8)0.0214 (9)0.0146 (8)0.0019 (7)0.0081 (7)0.0004 (7)
C120.0178 (8)0.0170 (8)0.0163 (8)0.0030 (6)0.0107 (7)0.0006 (7)
C130.0199 (8)0.0185 (9)0.0101 (8)0.0016 (7)0.0079 (6)0.0005 (7)
C140.0183 (8)0.0161 (8)0.0133 (8)0.0016 (6)0.0077 (6)0.0010 (7)
C150.0169 (8)0.0166 (8)0.0136 (8)0.0009 (6)0.0053 (6)0.0006 (7)
C160.0231 (9)0.0217 (9)0.0147 (8)0.0005 (7)0.0095 (7)0.0012 (7)
C170.0202 (8)0.0229 (9)0.0205 (9)0.0012 (7)0.0102 (7)0.0001 (8)
C180.0164 (8)0.0168 (9)0.0226 (9)0.0002 (7)0.0041 (7)0.0003 (7)
C190.0230 (9)0.0224 (9)0.0160 (9)0.0009 (7)0.0068 (7)0.0054 (7)
C200.0206 (8)0.0228 (9)0.0168 (9)0.0008 (7)0.0099 (7)0.0023 (7)
Geometric parameters (Å, º) top
Cl1—C181.7451 (18)C8—H8A0.9500
O1—C141.2349 (19)C9—C101.390 (3)
N1—C141.349 (2)C9—H9A0.9500
N1—C151.411 (2)C10—C111.388 (3)
N1—H1N10.84 (2)C10—H10A0.9500
C1—C61.386 (3)C11—C121.392 (2)
C1—C21.395 (3)C11—H11A0.9500
C1—H1A0.9500C12—C131.519 (2)
C2—C31.387 (3)C13—C141.529 (2)
C2—H2A0.9500C13—H13A1.0000
C3—C41.382 (3)C15—C161.395 (2)
C3—H3A0.9500C15—C201.397 (2)
C4—C51.386 (3)C16—C171.392 (2)
C4—H4A0.9500C16—H16A0.9500
C5—C61.396 (2)C17—C181.380 (3)
C5—H5A0.9500C17—H17A0.9500
C6—C131.524 (2)C18—C191.386 (2)
C7—C81.391 (3)C19—C201.379 (2)
C7—C121.396 (2)C19—H19A0.9500
C7—H7A0.9500C20—H20A0.9500
C8—C91.385 (3)
C14—N1—C15129.75 (14)C10—C11—C12121.05 (16)
C14—N1—H1N1115.6 (15)C10—C11—H11A119.5
C15—N1—H1N1114.4 (15)C12—C11—H11A119.5
C6—C1—C2120.71 (18)C11—C12—C7118.73 (16)
C6—C1—H1A119.6C11—C12—C13119.04 (15)
C2—C1—H1A119.6C7—C12—C13122.23 (15)
C3—C2—C1119.9 (2)C12—C13—C6114.31 (14)
C3—C2—H2A120.0C12—C13—C14111.05 (13)
C1—C2—H2A120.0C6—C13—C14110.69 (14)
C4—C3—C2119.74 (19)C12—C13—H13A106.8
C4—C3—H3A120.1C6—C13—H13A106.8
C2—C3—H3A120.1C14—C13—H13A106.8
C3—C4—C5120.29 (19)O1—C14—N1123.99 (16)
C3—C4—H4A119.9O1—C14—C13122.31 (15)
C5—C4—H4A119.9N1—C14—C13113.66 (14)
C4—C5—C6120.65 (19)C16—C15—C20119.63 (16)
C4—C5—H5A119.7C16—C15—N1124.52 (15)
C6—C5—H5A119.7C20—C15—N1115.82 (15)
C1—C6—C5118.67 (17)C17—C16—C15119.43 (16)
C1—C6—C13123.22 (15)C17—C16—H16A120.3
C5—C6—C13118.08 (16)C15—C16—H16A120.3
C8—C7—C12120.19 (17)C18—C17—C16120.00 (16)
C8—C7—H7A119.9C18—C17—H17A120.0
C12—C7—H7A119.9C16—C17—H17A120.0
C9—C8—C7120.61 (17)C17—C18—C19120.99 (16)
C9—C8—H8A119.7C17—C18—Cl1119.93 (14)
C7—C8—H8A119.7C19—C18—Cl1119.04 (14)
C8—C9—C10119.58 (17)C20—C19—C18119.22 (16)
C8—C9—H9A120.2C20—C19—H19A120.4
C10—C9—H9A120.2C18—C19—H19A120.4
C11—C10—C9119.83 (17)C19—C20—C15120.65 (16)
C11—C10—H10A120.1C19—C20—H20A119.7
C9—C10—H10A120.1C15—C20—H20A119.7
C6—C1—C2—C30.2 (3)C5—C6—C13—C1272.2 (2)
C1—C2—C3—C40.3 (3)C1—C6—C13—C1416.8 (2)
C2—C3—C4—C50.1 (3)C5—C6—C13—C14161.46 (15)
C3—C4—C5—C60.3 (3)C15—N1—C14—O11.8 (3)
C2—C1—C6—C50.2 (3)C15—N1—C14—C13179.66 (16)
C2—C1—C6—C13178.09 (17)C12—C13—C14—O143.3 (2)
C4—C5—C6—C10.4 (3)C6—C13—C14—O184.76 (19)
C4—C5—C6—C13177.91 (16)C12—C13—C14—N1138.80 (15)
C12—C7—C8—C90.1 (3)C6—C13—C14—N193.11 (17)
C7—C8—C9—C100.1 (3)C14—N1—C15—C169.8 (3)
C8—C9—C10—C110.1 (3)C14—N1—C15—C20172.23 (17)
C9—C10—C11—C120.3 (3)C20—C15—C16—C172.8 (3)
C10—C11—C12—C70.2 (2)N1—C15—C16—C17175.13 (16)
C10—C11—C12—C13179.13 (15)C15—C16—C17—C180.8 (3)
C8—C7—C12—C110.0 (2)C16—C17—C18—C191.4 (3)
C8—C7—C12—C13179.30 (15)C16—C17—C18—Cl1176.51 (14)
C11—C12—C13—C6149.59 (15)C17—C18—C19—C201.5 (3)
C7—C12—C13—C631.1 (2)Cl1—C18—C19—C20176.42 (14)
C11—C12—C13—C1484.30 (18)C18—C19—C20—C150.6 (3)
C7—C12—C13—C1495.00 (18)C16—C15—C20—C192.7 (3)
C1—C6—C13—C12109.50 (18)N1—C15—C20—C19175.40 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.84 (2)2.07 (2)2.8598 (19)157 (2)
C1—H1A···O10.952.583.202 (3)123
C4—H4A···Cg1ii0.952.933.415 (2)113
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC20H16ClNO
Mr321.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.2147 (2), 17.8203 (4), 9.5730 (2)
β (°) 114.019 (1)
V3)1591.68 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.49 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.890, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
14326, 3639, 3091
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.103, 1.09
No. of reflections3639
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.84 (2)2.07 (2)2.8598 (19)157 (2)
C1—H1A···O10.95002.58003.202 (3)123.00
C4—H4A···Cg1ii0.95002.933.415 (2)113.00
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). BN thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS-Phase 1 programme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1316–o1317.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o1287–o1288.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Ooi, C. W., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012c). Acta Cryst. E68, o1312–o1313.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds