metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­bis­­[5-carb­­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carboxyl­ato-κ2N3,O4]cobalt(II)

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and South China Normal University, Key Laboratory of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhanqg2001@yahoo.com.cn

(Received 11 July 2011; accepted 21 July 2011; online 2 August 2011)

In the title complex, [Co(C10H6N3O4)2(H2O)2], the CoII atom is located on an inversion centre and displays a distorted octa­hedral coordination geometry defined by two N,O-bidentate ligands in the equatorial plane and two water mol­ecules in the axial positions. The conformation is stabilized by intra­molecular O—H⋯O hydrogen bonds. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains, which are further connected by inter­molecular O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, forming a two-dimensional supra­molecular network parallel to (110).

Related literature

For general background to the design and synthesis of coordination polymers based on 1H-imidazole-4,5-dicarb­oxy­lic acid, see: Gu et al. (2010[Gu, Z.-G., Cai, Y.-P., Fang, H.-C., Zhou, Z.-Y., Thallapally, P.-K., Tian, J., Liu, J. & Exarhos, G.-J. (2010). Chem. Commun. 46, 5373-5375.]); Wang et al. (2010[Wang, S., Zhao, T.-T., Li, G.-H., Wojtas, L., Huo, Q.-S., Eddaoudi, M. & Liu, Y.-L. (2010). J. Am. Chem. Soc. 132, 18038-18041.]). For related complexes with 5-carb­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carboxyl­ate, see: Chen (2008[Chen, L.-Z. (2008). Acta Cryst. E64, m1286.]); Liu et al. (2009[Liu, W., Zhang, G., Li, X., Wu, B.-L. & Zhang, H.-Y. (2009). Acta Cryst. E65, m938-m939.]); Jing et al. (2010[Jing, X.-M., Meng, H., Li, G.-H., Yu, Y., Huo, Q.-S., Eddaoudi, M. & Liu, Y.-L. (2010). Cryst. Growth Des. 10, 3489-3495.], 2011[Jing, X.-M., Zhao, T.-T., Zheng, B., Peng, Y., Yan, Y., Huo, Q.-S. & Liu, Y.-L. (2011). Inorg. Chem. Commun. 14, 22-25.]); Zhou et al. (2011[Zhou, R.-S., Song, J.-F., Li, Y.-B., Xu, C.-Y. & Yang, X.-F. (2011). Z. Anorg. Allg. Chem. 637, 251-256.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H6N3O4)2(H2O)2]

  • Mr = 559.32

  • Triclinic, [P \overline 1]

  • a = 7.0240 (9) Å

  • b = 8.8770 (12) Å

  • c = 9.3240 (12) Å

  • α = 81.598 (2)°

  • β = 83.290 (2)°

  • γ = 67.755 (2)°

  • V = 531.12 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 298 K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.765, Tmax = 0.803

  • 2936 measured reflections

  • 2052 independent reflections

  • 1589 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 1.06

  • 2052 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.65 2.465 (3) 176
N2—H2⋯O4i 0.86 2.00 2.840 (3) 166
O5—H5A⋯O3ii 0.85 2.07 2.918 (3) 173
O5—H5B⋯N3iii 0.85 2.02 2.784 (3) 150
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) x, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the design and synthesis of novel metal-organic coordination polymers based on N-heterocyclic carboxylic acids have provoked much attention owing to their structure diversity and their potential applications as functional materials. Particular attention has been paid to the 1H-imidazole-4,5-dicarboxylic acid (H3IDC) ligand, because it can coordinate with metal ions in diverse coordination fashions to produce a series of complexes with different structures and interesting properties (Gu et al., 2010; Wang et al., 2010). In this work, a very close analogue ligand of H3IDC, 5-carboxy-2-(3-pyridyl)-1H-imidazole-4-carboxylate (H3PyIDC), has been chosen to prepare new coordination polymers. Up to now, only two 0D clusters (Chen, 2008; Liu et al., 2009), one 1D chain (Jing et al., 2011), one 2D layer (Zhou et al., 2011), and one 3D network (Jing et al., 2010) constructed by the H3PyIDC ligand have been reported. For example, Chen (2008) and Liu et al. (2009) have described the structures of the mononuclear complexes [Mn(H2PyIDC)2(H2O)2] and [Fe(H2PyIDC)2(H2O)2], in which both the manganese(II) and iron(II) ions show octahedral coordinations with the H2PyIDC ligands. A new complex [Co(H2PyIDC)2(H2O)2], (I), which is isostructural with the manganese(II) and iron(II) analogues, is presented in this paper.

As illustrated in Fig. 1, the molecule of (I) is a discrete neutral monomer, with an asymmetric unit that contains one-half of the [Co(H2PyIDC)2(H2O)2] formula unit. The Co atom lies on an inversion center and is six-coordinated with two nitrogen and two oxygen atoms from two chelating H2PIDC ligands in the equatorial plane, and two coordinated water molecules in axial positions, forming a slightly distorted octahedral geometry. The Co–N (2.215 (2) Å) and Co–O nond distances (2.061 (2)–2.098 (2)Å) are similar to the M–O and M–N bond lengths ( M = Mn, Fe ) observed in the corresponding isotypic structures. The conformation of the complex is stabilized by intramolecular O—H···O hydrogen bonds. In the crystal structure, intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into one-dimensional chains as shown in Fig. 2. The chains are further connected by two types of hydrogen bonds O–H···O and O–H···N involving the coordinated water molecule, the carboxylate group and the uncoordinated pyridine N atoms, resulting in a two-dimensional supramolecular network (Fig. 3).

Related literature top

For general background to the design and synthesis of coordination polymers based on 1H-imidazole-4,5-dicarboxylic acid, see: Gu et al. (2010); Wang et al. (2010). For related complexes with 5-carboxy-2-(3-pyridyl)-1H-imidazole-4-carboxylate, see: Chen (2008); Liu et al. (2009); Jing et al. (2010, 2011); Zhou et al. (2011).

Experimental top

A mixture of CoCl2.6H2O (47.6 mg, 0.2 mmol), H3PyIDC (46.6 mg, 0.2 mmol), 8 ml H2O, and 0.1 mL Et3N was sealed in a 15 mL Teflon-lined stainless steel autoclave, heated at 443 K for 72 h, and then slowly cooled to room temperature at a rate of 5 K h-1. Brown block-shaped crystals of (I) were obtained with a yield of 28% after washing with distilled water and drying in air.

Refinement top

Water H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.85 Å and Uiso(H) = 1.2 Ueq(O). Other H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(C, N) or Uiso(H)= 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are related to the labelled atoms by the symmetry operation 2-x, -y, 1-z.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis, showing the one-dimensional chain structure. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Crystal packing of the title compound showing the two-dimensional hydrogen-bonding network (dashed lines).
trans-Diaquabis[5-carboxy-2-(3-pyridyl)-1H-imidazole-4- carboxylato-κ2N3,O4]cobalt(II) top
Crystal data top
[Co(C10H6N3O4)2(H2O)2]Z = 1
Mr = 559.32F(000) = 285
Triclinic, P1Dx = 1.749 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0240 (9) ÅCell parameters from 860 reflections
b = 8.8770 (12) Åθ = 2.2–24.9°
c = 9.3240 (12) ŵ = 0.88 mm1
α = 81.598 (2)°T = 298 K
β = 83.290 (2)°Block, brown
γ = 67.755 (2)°0.32 × 0.28 × 0.26 mm
V = 531.12 (12) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2052 independent reflections
Radiation source: fine-focus sealed tube1589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.765, Tmax = 0.803k = 106
2936 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.3865P]
where P = (Fo2 + 2Fc2)/3
2052 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(C10H6N3O4)2(H2O)2]γ = 67.755 (2)°
Mr = 559.32V = 531.12 (12) Å3
Triclinic, P1Z = 1
a = 7.0240 (9) ÅMo Kα radiation
b = 8.8770 (12) ŵ = 0.88 mm1
c = 9.3240 (12) ÅT = 298 K
α = 81.598 (2)°0.32 × 0.28 × 0.26 mm
β = 83.290 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2052 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1589 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.803Rint = 0.017
2936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
2052 reflectionsΔρmin = 0.33 e Å3
170 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.00000.50000.0352 (2)
O30.5734 (4)0.6730 (3)0.6242 (2)0.0470 (6)
H30.63700.61540.56010.071*
N20.6548 (4)0.2945 (3)0.8556 (2)0.0313 (6)
H20.59960.31980.94040.038*
O10.9299 (4)0.2412 (3)0.4017 (2)0.0432 (6)
N10.8176 (4)0.1439 (3)0.6778 (2)0.0310 (6)
O20.7771 (4)0.5056 (3)0.4308 (2)0.0463 (6)
O40.4586 (4)0.6330 (3)0.8526 (2)0.0511 (7)
C30.6630 (5)0.4031 (4)0.7370 (3)0.0309 (7)
C50.7482 (5)0.1401 (4)0.8172 (3)0.0295 (7)
O50.7336 (3)0.0027 (3)0.4303 (2)0.0456 (6)
H5A0.63630.09010.41780.055*
H5B0.72390.06200.36980.055*
C40.5565 (5)0.5820 (4)0.7409 (3)0.0359 (8)
N30.7778 (4)0.1290 (3)1.1669 (3)0.0395 (7)
C10.8292 (5)0.3538 (4)0.4769 (3)0.0358 (8)
C100.7591 (5)0.0006 (4)1.0681 (3)0.0357 (7)
H100.73950.09881.10060.043*
C20.7669 (5)0.3071 (4)0.6286 (3)0.0307 (7)
C60.7672 (5)0.0064 (4)0.9188 (3)0.0302 (7)
C90.8085 (5)0.2721 (4)1.1191 (3)0.0408 (8)
H90.82380.36341.18650.049*
C80.8181 (5)0.2887 (4)0.9732 (3)0.0413 (8)
H80.84110.39010.94360.050*
C70.7934 (5)0.1542 (4)0.8716 (3)0.0381 (8)
H70.79430.16280.77320.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0425 (4)0.0304 (4)0.0199 (3)0.0005 (3)0.0020 (2)0.0042 (2)
O30.0634 (17)0.0283 (12)0.0362 (13)0.0031 (12)0.0034 (12)0.0062 (10)
N20.0357 (15)0.0312 (14)0.0193 (12)0.0042 (12)0.0043 (10)0.0056 (10)
O10.0519 (15)0.0365 (13)0.0219 (11)0.0020 (11)0.0086 (10)0.0030 (10)
N10.0381 (15)0.0277 (13)0.0184 (12)0.0038 (12)0.0022 (10)0.0016 (10)
O20.0629 (16)0.0325 (13)0.0277 (12)0.0056 (12)0.0065 (11)0.0050 (10)
O40.0706 (18)0.0352 (13)0.0320 (13)0.0002 (12)0.0022 (12)0.0142 (10)
C30.0337 (17)0.0270 (16)0.0239 (15)0.0026 (13)0.0012 (12)0.0043 (12)
C50.0319 (17)0.0280 (16)0.0217 (14)0.0035 (13)0.0014 (12)0.0047 (12)
O50.0465 (14)0.0443 (14)0.0339 (12)0.0005 (11)0.0039 (10)0.0109 (10)
C40.0436 (19)0.0300 (17)0.0261 (16)0.0045 (15)0.0011 (14)0.0043 (14)
N30.0473 (17)0.0373 (16)0.0261 (13)0.0089 (13)0.0000 (12)0.0001 (12)
C10.0409 (19)0.0346 (18)0.0198 (15)0.0019 (15)0.0016 (13)0.0014 (13)
C100.0412 (19)0.0343 (18)0.0261 (15)0.0083 (15)0.0008 (13)0.0044 (13)
C20.0357 (18)0.0269 (16)0.0217 (14)0.0036 (14)0.0010 (12)0.0026 (12)
C60.0311 (17)0.0298 (16)0.0227 (14)0.0055 (13)0.0047 (12)0.0025 (12)
C90.043 (2)0.0353 (18)0.0373 (18)0.0102 (16)0.0024 (15)0.0064 (15)
C80.050 (2)0.0316 (18)0.0390 (19)0.0113 (16)0.0023 (15)0.0070 (15)
C70.044 (2)0.0421 (19)0.0241 (15)0.0118 (16)0.0048 (14)0.0074 (14)
Geometric parameters (Å, º) top
Co1—O5i2.061 (2)C3—C21.374 (4)
Co1—O52.061 (2)C3—C41.481 (4)
Co1—O12.098 (2)C5—C61.465 (4)
Co1—O1i2.098 (2)O5—H5A0.8500
Co1—N12.215 (2)O5—H5B0.8499
Co1—N1i2.215 (2)N3—C101.332 (4)
O3—C41.279 (4)N3—C91.339 (4)
O3—H30.8200C1—C21.479 (4)
N2—C51.358 (4)C10—C61.394 (4)
N2—C31.368 (4)C10—H100.9300
N2—H20.8600C6—C71.384 (4)
O1—C11.243 (4)C9—C81.381 (4)
N1—C51.334 (3)C9—H90.9300
N1—C21.374 (4)C8—C71.380 (4)
O2—C11.276 (4)C8—H80.9300
O4—C41.223 (4)C7—H70.9300
O5i—Co1—O5180.0Co1—O5—H5A115.6
O5i—Co1—O189.88 (10)Co1—O5—H5B127.2
O5—Co1—O190.12 (10)H5A—O5—H5B107.7
O5i—Co1—O1i90.12 (10)O4—C4—O3124.5 (3)
O5—Co1—O1i89.88 (10)O4—C4—C3119.0 (3)
O1—Co1—O1i180.0O3—C4—C3116.5 (3)
O5i—Co1—N190.05 (9)C10—N3—C9117.7 (3)
O5—Co1—N189.95 (9)O1—C1—O2124.0 (3)
O1—Co1—N178.08 (8)O1—C1—C2117.3 (3)
O1i—Co1—N1101.92 (8)O2—C1—C2118.7 (3)
O5i—Co1—N1i89.95 (9)N3—C10—C6123.8 (3)
O5—Co1—N1i90.05 (9)N3—C10—H10118.1
O1—Co1—N1i101.92 (8)C6—C10—H10118.1
O1i—Co1—N1i78.08 (8)N1—C2—C3110.8 (2)
N1—Co1—N1i180.00 (7)N1—C2—C1119.0 (3)
C4—O3—H3109.5C3—C2—C1130.2 (3)
C5—N2—C3108.6 (2)C7—C6—C10117.7 (3)
C5—N2—H2125.7C7—C6—C5121.9 (3)
C3—N2—H2125.7C10—C6—C5120.4 (3)
C1—O1—Co1117.58 (19)N3—C9—C8122.3 (3)
C5—N1—C2105.3 (2)N3—C9—H9118.9
C5—N1—Co1146.4 (2)C8—C9—H9118.9
C2—N1—Co1107.94 (17)C7—C8—C9119.7 (3)
N2—C3—C2104.8 (3)C7—C8—H8120.1
N2—C3—C4121.4 (3)C9—C8—H8120.1
C2—C3—C4133.6 (3)C8—C7—C6118.7 (3)
N1—C5—N2110.5 (2)C8—C7—H7120.6
N1—C5—C6126.5 (3)C6—C7—H7120.6
N2—C5—C6123.0 (2)
O5i—Co1—O1—C188.7 (3)Co1—O1—C1—C20.4 (4)
O5—Co1—O1—C191.3 (3)C9—N3—C10—C60.8 (5)
N1—Co1—O1—C11.4 (2)C5—N1—C2—C31.2 (4)
N1i—Co1—O1—C1178.6 (2)Co1—N1—C2—C3176.6 (2)
O5i—Co1—N1—C584.2 (4)C5—N1—C2—C1178.0 (3)
O5—Co1—N1—C595.8 (4)Co1—N1—C2—C12.6 (3)
O1—Co1—N1—C5174.0 (4)N2—C3—C2—N11.3 (4)
O1i—Co1—N1—C56.0 (4)C4—C3—C2—N1172.9 (3)
O5i—Co1—N1—C287.8 (2)N2—C3—C2—C1177.8 (3)
O5—Co1—N1—C292.2 (2)C4—C3—C2—C18.0 (6)
O1—Co1—N1—C22.0 (2)O1—C1—C2—N11.7 (5)
O1i—Co1—N1—C2178.0 (2)O2—C1—C2—N1178.3 (3)
C5—N2—C3—C20.9 (3)O1—C1—C2—C3177.3 (3)
C5—N2—C3—C4174.2 (3)O2—C1—C2—C32.7 (6)
C2—N1—C5—N20.6 (4)N3—C10—C6—C70.9 (5)
Co1—N1—C5—N2172.7 (3)N3—C10—C6—C5179.1 (3)
C2—N1—C5—C6179.1 (3)N1—C5—C6—C723.7 (5)
Co1—N1—C5—C67.0 (6)N2—C5—C6—C7156.7 (3)
C3—N2—C5—N10.2 (4)N1—C5—C6—C10156.4 (3)
C3—N2—C5—C6179.9 (3)N2—C5—C6—C1023.3 (5)
N2—C3—C4—O40.4 (5)C10—N3—C9—C80.9 (5)
C2—C3—C4—O4173.0 (4)N3—C9—C8—C70.7 (5)
N2—C3—C4—O3179.9 (3)C9—C8—C7—C62.4 (5)
C2—C3—C4—O36.5 (6)C10—C6—C7—C82.5 (5)
Co1—O1—C1—O2179.7 (3)C5—C6—C7—C8177.6 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.652.465 (3)176
N2—H2···O4ii0.862.002.840 (3)166
O5—H5A···O3iii0.852.072.918 (3)173
O5—H5B···N3iv0.852.022.784 (3)150
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Co(C10H6N3O4)2(H2O)2]
Mr559.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0240 (9), 8.8770 (12), 9.3240 (12)
α, β, γ (°)81.598 (2), 83.290 (2), 67.755 (2)
V3)531.12 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.32 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.765, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
2936, 2052, 1589
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.06
No. of reflections2052
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.652.465 (3)176.0
N2—H2···O4i0.862.002.840 (3)166.2
O5—H5A···O3ii0.852.072.918 (3)173.0
O5—H5B···N3iii0.852.022.784 (3)149.6
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x, y, z1.
 

Acknowledgements

The authors acknowledge the Young Teacher Training Plan of Guangdong Universities for supporting this work.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L.-Z. (2008). Acta Cryst. E64, m1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, Z.-G., Cai, Y.-P., Fang, H.-C., Zhou, Z.-Y., Thallapally, P.-K., Tian, J., Liu, J. & Exarhos, G.-J. (2010). Chem. Commun. 46, 5373–5375.  CSD CrossRef CAS Google Scholar
First citationJing, X.-M., Meng, H., Li, G.-H., Yu, Y., Huo, Q.-S., Eddaoudi, M. & Liu, Y.-L. (2010). Cryst. Growth Des. 10, 3489–3495.  Web of Science CSD CrossRef CAS Google Scholar
First citationJing, X.-M., Zhao, T.-T., Zheng, B., Peng, Y., Yan, Y., Huo, Q.-S. & Liu, Y.-L. (2011). Inorg. Chem. Commun. 14, 22–25.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, W., Zhang, G., Li, X., Wu, B.-L. & Zhang, H.-Y. (2009). Acta Cryst. E65, m938–m939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Zhao, T.-T., Li, G.-H., Wojtas, L., Huo, Q.-S., Eddaoudi, M. & Liu, Y.-L. (2010). J. Am. Chem. Soc. 132, 18038–18041.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhou, R.-S., Song, J.-F., Li, Y.-B., Xu, C.-Y. & Yang, X.-F. (2011). Z. Anorg. Allg. Chem. 637, 251–256.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds