metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{1-[(2-hy­dr­oxy­eth­yl)imino­meth­yl]-2-naphtho­lato}pyridine­iron(III) pyridine monosolvate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 1 November 2010; accepted 11 November 2010; online 17 November 2010)

In the title complex, [Fe(C13H12NO2)Cl2(C5H5N)]·C5H5N, the iron(III) atom is six-coordinated by the N and O atoms from the Schiff base ligand, the N atom from a pyridine mol­ecule and two chloride anions in a distorted octa­hedral geometry. The crystal packing is stabilized by inter­molecular O—H⋯N hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the synthesis and applications of magnetic complexes, see: Oshio et al. (2004[Oshio, H., Hoshino, N., Ito, T. & Nakano, M. (2004). J. Am. Chem. Soc. 126, 8805-8812.]); Aromí & Brechin (2006[Aromí, G. & Brechin, E. K. (2006). Struct. Bond. pp. 1-67.]). For related structures, see: Goodwin et al. (2000[Goodwin, J. C., Price, D. J., Powell, A. K. & Heath, S. L. (2000). Eur. J. Inorg. Chem. pp. 1407-1410.]); Qian et al. (2008[Qian, J., Tian, J., Gu, W., Gao, S., Xin, L., Yan, S., Ribas, J., Liao, D. & Cheng, P. (2008). Dalton Trans. pp. 6948-6952.]); Hoshino et al. (2009[Hoshino, N., Ako, A. M., Powell, A. K. & Oshio, H. (2009). Inorg. Chem. 48, 3396-3407.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C13H12NO2)Cl2(C5H5N)]·C5H5N

  • Mr = 499.19

  • Monoclinic, P 21

  • a = 7.8590 (6) Å

  • b = 10.0153 (11) Å

  • c = 14.4884 (16) Å

  • β = 90.123 (1)°

  • V = 1140.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 298 K

  • 0.48 × 0.44 × 0.37 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.666, Tmax = 0.727

  • 5726 measured reflections

  • 3395 independent reflections

  • 3143 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.00

  • 3395 reflections

  • 281 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1265 Friedel pairs

  • Flack parameter: 0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.82 1.81 2.617 (4) 168
C12—H12⋯Cgi 0.93 2.71 3.594 (5) 159
C16—H16⋯Cgii 0.93 2.78 3.653 (6) 157
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z]; (ii) x, y+1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The considerable current interest in magnetic complexes arises from their relevance in diverse fields ranging from bioinorganic chemistry to molecular magnetic materials (Oshio et al., 2004; Aromí et al., 2006). We report here the synthesis and crystal structure of the title compound.

In the title complex (Fig. 1), the tridentate Schiff base ligand is derived from the condensation of 2-hydroxy-1-naphthaldehyde and ethanolamine. The iron(III) metal centre is six-coordinate by the N and O atoms from the Schiff base ligand, the N atom from a pyridine molecule and two chloride anions in a distorted octahedral geometry. The Fe–O(alkoxo) bond length [Fe1–O1 = 2.105 (2) Å] is longer than the Fe–O(phenoxo) distance [Fe1–O2 = 1.897 (2) Å], which lies well within the range of values reported in the literature (Goodwin et al., 2000; Qian et al., 2008; Hoshino et al., 2009). In the crystal structure, complex molecules and pyridine solvent molecules are linked into a three-dimensional network by O—H···N hydrogen bonds and C—H···π interactions (Table 1).

Related literature top

For the synthesis and applications of magnetic complexes, see: Oshio et al. (2004); Aromí & Brechin, 2006. For related structures, see: Goodwin et al. (2000); Qian et al. (2008); Hoshino et al. (2009).

Experimental top

Ethanolamine (1 mmol, 61.08 mg) was dissolved in methanol (10 ml) and added dropwise to a methanol solution of 2-hydroxy-1-naphthaldehyde (1 mmol, 172.19 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an MeCN/Py solution "(3:1 v/v, 4 ml) of FeCl3.6H2O(1 mmol, 270.29 mg) was added dropwise and stirred for another 7 h. The resulting black solution was filtrated and was allowed to stand at room temperature for about one week, whereupon block crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O).

Structure description top

The considerable current interest in magnetic complexes arises from their relevance in diverse fields ranging from bioinorganic chemistry to molecular magnetic materials (Oshio et al., 2004; Aromí et al., 2006). We report here the synthesis and crystal structure of the title compound.

In the title complex (Fig. 1), the tridentate Schiff base ligand is derived from the condensation of 2-hydroxy-1-naphthaldehyde and ethanolamine. The iron(III) metal centre is six-coordinate by the N and O atoms from the Schiff base ligand, the N atom from a pyridine molecule and two chloride anions in a distorted octahedral geometry. The Fe–O(alkoxo) bond length [Fe1–O1 = 2.105 (2) Å] is longer than the Fe–O(phenoxo) distance [Fe1–O2 = 1.897 (2) Å], which lies well within the range of values reported in the literature (Goodwin et al., 2000; Qian et al., 2008; Hoshino et al., 2009). In the crystal structure, complex molecules and pyridine solvent molecules are linked into a three-dimensional network by O—H···N hydrogen bonds and C—H···π interactions (Table 1).

For the synthesis and applications of magnetic complexes, see: Oshio et al. (2004); Aromí & Brechin, 2006. For related structures, see: Goodwin et al. (2000); Qian et al. (2008); Hoshino et al. (2009).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.
Dichlorido{1-[(2-hydroxyethyl)iminomethyl]-2-naphtholato}pyridineiron(III) pyridine monosolvate top
Crystal data top
[Fe(C13H12NO2)Cl2(C5H5N)]·C5H5NF(000) = 514
Mr = 499.19Dx = 1.454 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3504 reflections
a = 7.8590 (6) Åθ = 2.5–28.0°
b = 10.0153 (11) ŵ = 0.92 mm1
c = 14.4884 (16) ÅT = 298 K
β = 90.123 (1)°Block, black
V = 1140.4 (2) Å30.48 × 0.44 × 0.37 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
3395 independent reflections
Radiation source: fine-focus sealed tube3143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 89
Tmin = 0.666, Tmax = 0.727k = 118
5726 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.5289P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3395 reflectionsΔρmax = 0.25 e Å3
281 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 1265 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Fe(C13H12NO2)Cl2(C5H5N)]·C5H5NV = 1140.4 (2) Å3
Mr = 499.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.8590 (6) ŵ = 0.92 mm1
b = 10.0153 (11) ÅT = 298 K
c = 14.4884 (16) Å0.48 × 0.44 × 0.37 mm
β = 90.123 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3395 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
3143 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.727Rint = 0.021
5726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.25 e Å3
S = 1.00Δρmin = 0.19 e Å3
3395 reflectionsAbsolute structure: Flack (1983), 1265 Friedel pairs
281 parametersAbsolute structure parameter: 0.02 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.54656 (5)0.51232 (5)0.28032 (3)0.03179 (13)
Cl10.81839 (12)0.59516 (12)0.27394 (7)0.0505 (3)
Cl20.61339 (13)0.29636 (11)0.33678 (7)0.0486 (3)
N10.2862 (3)0.4752 (3)0.30300 (17)0.0321 (7)
N20.4541 (4)0.7190 (4)0.2447 (2)0.0386 (7)
N30.7698 (4)0.5286 (4)0.52783 (19)0.0458 (8)
O10.5126 (3)0.5757 (3)0.41754 (15)0.0374 (6)
H10.59680.55240.44690.056*
O20.5074 (3)0.4537 (3)0.15755 (16)0.0386 (6)
C10.3621 (4)0.5234 (5)0.4608 (2)0.0434 (9)
H1A0.33300.57570.51490.052*
H1B0.37980.43150.47960.052*
C20.2222 (4)0.5320 (5)0.3892 (2)0.0409 (10)
H2A0.12310.48270.40980.049*
H2B0.18940.62440.37980.049*
C30.1855 (4)0.4104 (4)0.2498 (2)0.0331 (8)
H30.07340.40060.26900.040*
C40.2316 (4)0.3513 (4)0.1627 (2)0.0309 (8)
C50.3927 (4)0.3731 (4)0.1223 (2)0.0334 (8)
C60.4347 (5)0.3075 (5)0.0381 (2)0.0440 (10)
H60.54030.32270.01130.053*
C70.3239 (5)0.2239 (5)0.0032 (2)0.0505 (11)
H70.35640.18080.05720.061*
C80.1613 (5)0.1997 (4)0.0327 (2)0.0419 (10)
C90.1090 (5)0.2669 (4)0.1152 (2)0.0330 (8)
C100.0580 (5)0.2445 (4)0.1469 (3)0.0431 (9)
H100.09680.29110.19820.052*
C110.1640 (6)0.1561 (5)0.1041 (3)0.0566 (12)
H110.27330.14260.12680.068*
C120.1089 (6)0.0855 (6)0.0261 (3)0.0632 (14)
H120.17960.02210.00110.076*
C130.0459 (6)0.1095 (5)0.0094 (3)0.0576 (12)
H130.07830.06560.06310.069*
C140.3280 (5)0.7367 (5)0.1839 (3)0.0496 (10)
H140.27860.66220.15650.060*
C150.2690 (7)0.8615 (6)0.1604 (3)0.0659 (14)
H150.18140.87080.11770.079*
C160.3409 (7)0.9727 (5)0.2009 (4)0.0731 (16)
H160.30431.05800.18510.088*
C170.4661 (7)0.9548 (5)0.2644 (4)0.0635 (13)
H170.51471.02790.29400.076*
C180.5204 (5)0.8271 (5)0.2843 (3)0.0509 (10)
H180.60710.81600.32740.061*
C190.8321 (6)0.4104 (5)0.5477 (3)0.0588 (13)
H190.78210.33550.52110.071*
C200.9701 (7)0.3926 (6)0.6070 (4)0.0650 (14)
H201.01130.30770.62000.078*
C211.0421 (5)0.5014 (8)0.6448 (3)0.0656 (14)
H211.13340.49290.68520.079*
C220.9803 (7)0.6227 (7)0.6233 (4)0.0805 (19)
H221.03060.69910.64760.097*
C230.8438 (7)0.6334 (6)0.5658 (4)0.0663 (14)
H230.80090.71780.55270.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0295 (2)0.0306 (3)0.0353 (2)0.0020 (2)0.00537 (16)0.0014 (2)
Cl10.0305 (4)0.0524 (7)0.0685 (6)0.0014 (4)0.0044 (4)0.0056 (5)
Cl20.0574 (6)0.0332 (5)0.0551 (6)0.0102 (5)0.0071 (4)0.0020 (4)
N10.0296 (14)0.038 (2)0.0290 (13)0.0046 (12)0.0029 (11)0.0044 (12)
N20.0401 (17)0.034 (2)0.0420 (16)0.0029 (15)0.0066 (13)0.0025 (15)
N30.0476 (17)0.046 (2)0.0432 (16)0.0030 (18)0.0118 (13)0.0028 (18)
O10.0377 (13)0.0390 (16)0.0354 (12)0.0012 (11)0.0105 (10)0.0038 (11)
O20.0354 (13)0.0449 (17)0.0355 (12)0.0024 (11)0.0012 (10)0.0040 (11)
C10.0451 (18)0.053 (3)0.0323 (16)0.001 (2)0.0004 (13)0.005 (2)
C20.0336 (17)0.051 (3)0.0381 (17)0.0047 (18)0.0013 (13)0.0170 (19)
C30.0307 (17)0.032 (2)0.0366 (18)0.0043 (16)0.0019 (14)0.0004 (16)
C40.0349 (18)0.028 (2)0.0294 (16)0.0088 (15)0.0046 (14)0.0009 (14)
C50.0358 (18)0.033 (2)0.0313 (17)0.0065 (16)0.0076 (14)0.0028 (15)
C60.0405 (19)0.060 (3)0.0319 (18)0.006 (2)0.0015 (15)0.0043 (19)
C70.060 (2)0.060 (3)0.0319 (19)0.011 (2)0.0023 (17)0.014 (2)
C80.050 (2)0.042 (3)0.0339 (18)0.002 (2)0.0114 (16)0.0019 (17)
C90.0387 (18)0.029 (2)0.0310 (16)0.0043 (15)0.0086 (14)0.0003 (14)
C100.040 (2)0.047 (3)0.042 (2)0.0033 (18)0.0111 (16)0.0038 (18)
C110.049 (2)0.066 (3)0.056 (2)0.011 (2)0.016 (2)0.001 (2)
C120.071 (3)0.064 (3)0.055 (3)0.020 (3)0.026 (2)0.010 (2)
C130.074 (3)0.054 (3)0.044 (2)0.002 (2)0.019 (2)0.018 (2)
C140.053 (2)0.046 (3)0.049 (2)0.010 (2)0.0076 (19)0.007 (2)
C150.070 (3)0.069 (4)0.058 (3)0.027 (3)0.006 (2)0.012 (3)
C160.094 (4)0.047 (4)0.078 (3)0.028 (3)0.015 (3)0.021 (3)
C170.076 (3)0.029 (2)0.085 (3)0.000 (2)0.011 (3)0.000 (2)
C180.051 (2)0.037 (3)0.065 (3)0.001 (2)0.0052 (19)0.001 (2)
C190.060 (3)0.049 (3)0.067 (3)0.008 (2)0.017 (2)0.001 (2)
C200.063 (3)0.058 (4)0.074 (3)0.005 (3)0.011 (2)0.018 (3)
C210.042 (2)0.099 (5)0.056 (2)0.012 (3)0.0130 (17)0.011 (3)
C220.061 (3)0.091 (5)0.089 (4)0.002 (3)0.021 (3)0.036 (4)
C230.066 (3)0.049 (3)0.084 (3)0.009 (3)0.018 (3)0.012 (3)
Geometric parameters (Å, º) top
Fe1—O21.897 (2)C8—C131.417 (6)
Fe1—O12.105 (2)C8—C91.433 (5)
Fe1—N12.106 (3)C9—C101.409 (5)
Fe1—N22.254 (3)C10—C111.364 (6)
Fe1—Cl12.2938 (10)C10—H100.9300
Fe1—Cl22.3709 (12)C11—C121.403 (7)
N1—C31.280 (4)C11—H110.9300
N1—C21.462 (4)C12—C131.344 (7)
N2—C181.331 (6)C12—H120.9300
N2—C141.336 (5)C13—H130.9300
N3—C191.312 (7)C14—C151.375 (7)
N3—C231.319 (6)C14—H140.9300
O1—C11.439 (4)C15—C161.379 (8)
O1—H10.8200C15—H150.9300
O2—C51.313 (4)C16—C171.357 (7)
C1—C21.513 (4)C16—H160.9300
C1—H1A0.9700C17—C181.379 (6)
C1—H1B0.9700C17—H170.9300
C2—H2A0.9700C18—H180.9300
C2—H2B0.9700C19—C201.393 (7)
C3—C41.440 (5)C19—H190.9300
C3—H30.9300C20—C211.344 (9)
C4—C51.414 (5)C20—H200.9300
C4—C91.455 (5)C21—C221.345 (9)
C5—C61.424 (5)C21—H210.9300
C6—C71.348 (6)C22—C231.361 (8)
C6—H60.9300C22—H220.9300
C7—C81.402 (6)C23—H230.9300
C7—H70.9300
O2—Fe1—O1163.37 (10)C6—C7—H7119.0
O2—Fe1—N186.33 (10)C8—C7—H7119.0
O1—Fe1—N177.32 (9)C7—C8—C13122.2 (4)
O2—Fe1—N291.01 (11)C7—C8—C9119.5 (3)
O1—Fe1—N284.14 (11)C13—C8—C9118.3 (4)
N1—Fe1—N283.39 (11)C10—C9—C8117.8 (3)
O2—Fe1—Cl1102.90 (8)C10—C9—C4123.7 (3)
O1—Fe1—Cl192.81 (7)C8—C9—C4118.5 (3)
N1—Fe1—Cl1167.24 (9)C11—C10—C9121.6 (4)
N2—Fe1—Cl187.61 (8)C11—C10—H10119.2
O2—Fe1—Cl294.40 (9)C9—C10—H10119.2
O1—Fe1—Cl288.73 (8)C10—C11—C12120.3 (4)
N1—Fe1—Cl290.00 (9)C10—C11—H11119.9
N2—Fe1—Cl2171.18 (9)C12—C11—H11119.9
Cl1—Fe1—Cl297.95 (4)C13—C12—C11119.9 (4)
C3—N1—C2119.9 (3)C13—C12—H12120.0
C3—N1—Fe1126.5 (2)C11—C12—H12120.0
C2—N1—Fe1113.6 (2)C12—C13—C8121.9 (4)
C18—N2—C14117.8 (4)C12—C13—H13119.0
C18—N2—Fe1121.5 (3)C8—C13—H13119.0
C14—N2—Fe1120.7 (3)N2—C14—C15122.2 (5)
C19—N3—C23117.5 (3)N2—C14—H14118.9
C1—O1—Fe1114.1 (2)C15—C14—H14118.9
C1—O1—H1109.5C14—C15—C16119.4 (4)
Fe1—O1—H1107.4C14—C15—H15120.3
C5—O2—Fe1131.7 (2)C16—C15—H15120.3
O1—C1—C2106.1 (3)C17—C16—C15118.5 (5)
O1—C1—H1A110.5C17—C16—H16120.7
C2—C1—H1A110.5C15—C16—H16120.7
O1—C1—H1B110.5C16—C17—C18119.2 (5)
C2—C1—H1B110.5C16—C17—H17120.4
H1A—C1—H1B108.7C18—C17—H17120.4
N1—C2—C1108.3 (3)N2—C18—C17122.9 (4)
N1—C2—H2A110.0N2—C18—H18118.6
C1—C2—H2A110.0C17—C18—H18118.6
N1—C2—H2B110.0N3—C19—C20122.7 (5)
C1—C2—H2B110.0N3—C19—H19118.7
H2A—C2—H2B108.4C20—C19—H19118.7
N1—C3—C4125.4 (3)C21—C20—C19118.3 (5)
N1—C3—H3117.3C21—C20—H20120.8
C4—C3—H3117.3C19—C20—H20120.8
C5—C4—C3121.8 (3)C20—C21—C22119.1 (4)
C5—C4—C9119.1 (3)C20—C21—H21120.5
C3—C4—C9119.1 (3)C22—C21—H21120.5
O2—C5—C4123.2 (3)C21—C22—C23119.8 (6)
O2—C5—C6117.2 (3)C21—C22—H22120.1
C4—C5—C6119.6 (3)C23—C22—H22120.1
C7—C6—C5121.1 (4)N3—C23—C22122.6 (5)
C7—C6—H6119.5N3—C23—H23118.7
C5—C6—H6119.5C22—C23—H23118.7
C6—C7—C8122.1 (4)
O2—Fe1—N1—C312.9 (3)C3—C4—C5—O24.1 (5)
O1—Fe1—N1—C3170.2 (3)C9—C4—C5—O2176.0 (3)
N2—Fe1—N1—C3104.4 (3)C3—C4—C5—C6177.2 (3)
Cl1—Fe1—N1—C3149.8 (3)C9—C4—C5—C62.8 (5)
Cl2—Fe1—N1—C381.5 (3)O2—C5—C6—C7179.5 (4)
O2—Fe1—N1—C2167.0 (3)C4—C5—C6—C70.7 (6)
O1—Fe1—N1—C29.8 (2)C5—C6—C7—C81.7 (7)
N2—Fe1—N1—C275.6 (3)C6—C7—C8—C13178.5 (4)
Cl1—Fe1—N1—C230.2 (5)C6—C7—C8—C90.8 (7)
Cl2—Fe1—N1—C298.5 (3)C7—C8—C9—C10177.3 (4)
O2—Fe1—N2—C18146.3 (3)C13—C8—C9—C103.4 (5)
O1—Fe1—N2—C1849.6 (3)C7—C8—C9—C44.2 (5)
N1—Fe1—N2—C18127.5 (3)C13—C8—C9—C4175.1 (4)
Cl1—Fe1—N2—C1843.5 (3)C5—C4—C9—C10176.5 (3)
O2—Fe1—N2—C1434.9 (3)C3—C4—C9—C103.6 (5)
O1—Fe1—N2—C14129.1 (3)C5—C4—C9—C85.1 (5)
N1—Fe1—N2—C1451.3 (3)C3—C4—C9—C8174.8 (3)
Cl1—Fe1—N2—C14137.8 (3)C8—C9—C10—C113.8 (6)
O2—Fe1—O1—C129.9 (5)C4—C9—C10—C11174.6 (4)
N1—Fe1—O1—C119.0 (3)C9—C10—C11—C120.6 (7)
N2—Fe1—O1—C1103.5 (3)C10—C11—C12—C133.2 (8)
Cl1—Fe1—O1—C1169.2 (3)C11—C12—C13—C83.5 (8)
Cl2—Fe1—O1—C171.3 (3)C7—C8—C13—C12179.1 (5)
O1—Fe1—O2—C536.4 (6)C9—C8—C13—C120.2 (7)
N1—Fe1—O2—C525.7 (3)C18—N2—C14—C151.4 (6)
N2—Fe1—O2—C5109.0 (3)Fe1—N2—C14—C15179.8 (3)
Cl1—Fe1—O2—C5163.2 (3)N2—C14—C15—C160.3 (7)
Cl2—Fe1—O2—C564.0 (3)C14—C15—C16—C171.3 (8)
Fe1—O1—C1—C242.2 (4)C15—C16—C17—C181.8 (8)
C3—N1—C2—C1145.1 (4)C14—N2—C18—C170.9 (6)
Fe1—N1—C2—C134.9 (4)Fe1—N2—C18—C17179.7 (3)
O1—C1—C2—N148.7 (5)C16—C17—C18—N20.7 (7)
C2—N1—C3—C4179.1 (4)C23—N3—C19—C200.5 (7)
Fe1—N1—C3—C40.9 (5)N3—C19—C20—C210.3 (8)
N1—C3—C4—C57.3 (6)C19—C20—C21—C220.8 (7)
N1—C3—C4—C9172.6 (4)C20—C21—C22—C231.7 (8)
Fe1—O2—C5—C425.9 (5)C19—N3—C23—C220.3 (8)
Fe1—O2—C5—C6155.4 (3)C21—C22—C23—N31.5 (10)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.821.812.617 (4)168
C12—H12···Cgi0.932.713.594 (5)159
C16—H16···Cgii0.932.783.653 (6)157
Symmetry codes: (i) x, y1/2, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C13H12NO2)Cl2(C5H5N)]·C5H5N
Mr499.19
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.8590 (6), 10.0153 (11), 14.4884 (16)
β (°) 90.123 (1)
V3)1140.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.48 × 0.44 × 0.37
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.666, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
5726, 3395, 3143
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.00
No. of reflections3395
No. of parameters281
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19
Absolute structureFlack (1983), 1265 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.821.812.617 (4)168.0
C12—H12···Cgi0.932.713.594 (5)159
C16—H16···Cgii0.932.783.653 (6)157
Symmetry codes: (i) x, y1/2, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20671048, 21041002)

References

First citationAromí, G. & Brechin, E. K. (2006). Struct. Bond. pp. 1–67.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoodwin, J. C., Price, D. J., Powell, A. K. & Heath, S. L. (2000). Eur. J. Inorg. Chem. pp. 1407–1410.  CrossRef Google Scholar
First citationHoshino, N., Ako, A. M., Powell, A. K. & Oshio, H. (2009). Inorg. Chem. 48, 3396–3407.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOshio, H., Hoshino, N., Ito, T. & Nakano, M. (2004). J. Am. Chem. Soc. 126, 8805–8812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQian, J., Tian, J., Gu, W., Gao, S., Xin, L., Yan, S., Ribas, J., Liao, D. & Cheng, P. (2008). Dalton Trans. pp. 6948–6952.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds