organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Morpholino­meth­yl)indoline-2,3-dione

aCollege of Chemistry and Chemical Engineering, Xi'an Shiyou University, Second Dianzi Road, Xi'an 710065, People's Republic of China, and bDepartment of Pharmacy, Xi'an Medical University, Hanguang Round 137, Xi'an 710021, People's Republic of China
*Correspondence e-mail: cg1014@126.com

(Received 29 May 2010; accepted 15 June 2010; online 23 June 2010)

In the title compound, C13H14N2O3, the morpholine ring displays a chair conformation, with the (2,3-dioxoindolin-1-yl)methyl group in an equatorial position. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis of isatin-N-Mannich bases, see: Varma & Nobles ((1966[Varma, R. S. & Nobles, W. L. (1966). J. Heterocycl. Chem. 3, 462-465.]). For the bioactivity of isatin derivatives, see: Glover et al. (1980[Glover, V., Reveley, M. A. & Sandler, M. (1980). Biochem. Pharmacol. 29, 467-470.], 1988[Glover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1988). J. Neurochem. 51, 656-659.]); Maysinger et al. (1980[Maysinger, D. & Movrin, M. (1980). Arzneim. Forschung. 30, 1839-1840.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O3

  • Mr = 246.26

  • Monoclinic, P 21 /c

  • a = 11.608 (2) Å

  • b = 8.2818 (17) Å

  • c = 12.595 (3) Å

  • β = 100.20 (3)°

  • V = 1191.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.26 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.984

  • 7614 measured reflections

  • 3556 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.144

  • S = 0.99

  • 3556 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.93 2.47 3.349 (2) 158
C5—H5A⋯O2ii 0.93 2.52 3.216 (2) 131
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Isatin has draw great attention from being discovered as a component of endogenous monoamine oxidase (MAO) inhibitory activity (tribulin) and subsequently identified as a selective inhibitor of MAO B at low concentrations (Glover et al., 1980, 1988). In the following years, many isatin derivatives, such as isatin hydrazono, isatin Mannich bases and isatin based spiroazetidinones, have also been reported to possess anticonvulsant activity (Maysinger, et al., 1980). Herein we report the synthesis and crystal structure of the title compound.

The X-ray structural analysis confirmed the assignment of the structure from spectroscopic data. The molecular structure of the title compound is depicted in Fig. 1. Geometric parameters of the title compound are in the usual ranges. The morpholin ring displays a typical chair conformation, with the (2,3-dioxoindolin-1-yl)methyl group in equatorial position. In the crystal structure, the molecules are linked into a three-dimensional network by C—H···O hydrogen bonds (Table 1).

Related literature top

For the synthesis of isatin-N-Mannich bases, see: Varma & Nobles ((1966). For the bioactivity of isatin derivatives, see: Glover et al. (1980, 1988); Maysinger et al. (1980).

Experimental top

The title compound was synthesized according the literature method (Varma & Nobles, 1966). Isatin (1 mmol), formaldehyde (1.2 mmol) and morpholin (1.2 mmol) were dissolved in methanol (20 ml). The mixture was refluxed until the disappearance of isatin, as evidenced by thin-layer chromatography. The solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate = 1:1 v/v), giving the title compound. 1H-NMR (D6—DMSO, 400 MHz): 7.61 (2H, m), 7.15 (1H, t, J = 7.2 Hz), 7.09 (1H, d, J = 8.0 Hz), 4.45 (2H, s), 3.70 (4H, t, J = 4.8 Hz), 2.63 (4H, t, J = 4.8 Hz); MS (EI) m/z: 246 (M+). 20 mg of the title compound was dissolved in 50 ml methanol and the solution was kept at room temperature for 4 d. Slow evaporation of the solvent gave orange single crystals of the title compound suitable for X-ray analysis.

Refinement top

The H atoms attached to atom C9 were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined as riding, with C—H = 0.93-0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 drawing of the title compound, with the atom-numbering scheme and 30% probability displacement ellipsoids.
1-(Morpholinomethyl)indoline-2,3-dione top
Crystal data top
C13H14N2O3F(000) = 520
Mr = 246.26Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7356 reflections
a = 11.608 (2) Åθ = 1.5–25.0°
b = 8.2818 (17) ŵ = 0.10 mm1
c = 12.595 (3) ÅT = 293 K
β = 100.20 (3)°Block, orange
V = 1191.7 (4) Å30.26 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3556 independent reflections
Radiation source: fine-focus sealed tube2275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 30.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.979, Tmax = 0.984k = 1110
7614 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3556 reflections(Δ/σ)max = 0.039
171 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H14N2O3V = 1191.7 (4) Å3
Mr = 246.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.608 (2) ŵ = 0.10 mm1
b = 8.2818 (17) ÅT = 293 K
c = 12.595 (3) Å0.26 × 0.18 × 0.16 mm
β = 100.20 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3556 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2275 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.021
7614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.19 e Å3
3556 reflectionsΔρmin = 0.22 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.91766 (9)0.23385 (12)0.11391 (8)0.0368 (3)
N10.73127 (8)0.33226 (11)0.00535 (8)0.0347 (3)
C70.68098 (9)0.48053 (14)0.03062 (9)0.0313 (3)
O20.59676 (8)0.46330 (13)0.24949 (7)0.0527 (3)
C100.98088 (11)0.23531 (16)0.02322 (11)0.0414 (3)
H10A0.95910.33020.02090.050*
H10B0.96040.14040.02120.050*
O31.14402 (7)0.37200 (13)0.13337 (9)0.0564 (3)
O10.73752 (10)0.19019 (12)0.15122 (8)0.0567 (3)
C60.68346 (10)0.54811 (15)0.13085 (10)0.0379 (3)
H6A0.71920.49570.19340.046*
C80.62332 (10)0.55651 (14)0.06320 (9)0.0345 (3)
C20.63447 (10)0.45189 (15)0.15409 (10)0.0377 (3)
C90.79252 (11)0.21364 (15)0.08256 (11)0.0373 (3)
C50.63034 (11)0.69807 (15)0.13481 (11)0.0456 (3)
H5A0.63230.74770.20140.055*
C10.70789 (11)0.30626 (15)0.10310 (10)0.0385 (3)
C30.56961 (11)0.70484 (16)0.05764 (11)0.0444 (3)
H3A0.53110.75570.11970.053*
C130.95237 (11)0.37262 (17)0.18371 (11)0.0435 (3)
H13A0.91260.36920.24520.052*
H13B0.93030.47180.14430.052*
C40.57469 (12)0.77531 (16)0.04263 (12)0.0495 (4)
H4A0.54030.87570.04810.059*
C121.08328 (12)0.3691 (2)0.22195 (12)0.0540 (4)
H12A1.10650.46160.26800.065*
H12B1.10430.27210.26420.065*
C111.11103 (11)0.23690 (17)0.06581 (12)0.0514 (4)
H11A1.13290.13850.10620.062*
H11B1.15290.23970.00570.062*
H9A0.7745 (10)0.1067 (17)0.0422 (11)0.038 (3)*
H9B0.7566 (11)0.2191 (14)0.1471 (11)0.036 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0360 (5)0.0363 (5)0.0385 (6)0.0006 (4)0.0077 (4)0.0042 (4)
N10.0366 (5)0.0373 (5)0.0306 (5)0.0046 (4)0.0074 (4)0.0023 (4)
C70.0285 (5)0.0345 (6)0.0319 (6)0.0018 (4)0.0082 (4)0.0003 (4)
O20.0613 (6)0.0656 (7)0.0290 (5)0.0100 (5)0.0018 (4)0.0040 (4)
C100.0420 (7)0.0404 (7)0.0440 (7)0.0003 (5)0.0135 (6)0.0044 (5)
O30.0414 (5)0.0612 (6)0.0685 (7)0.0114 (4)0.0150 (5)0.0142 (5)
O10.0671 (7)0.0587 (6)0.0452 (6)0.0075 (5)0.0125 (5)0.0178 (5)
C60.0385 (6)0.0456 (7)0.0302 (6)0.0014 (5)0.0073 (5)0.0019 (5)
C80.0316 (6)0.0402 (6)0.0322 (6)0.0026 (5)0.0072 (5)0.0032 (5)
C20.0352 (6)0.0475 (7)0.0304 (6)0.0072 (5)0.0058 (5)0.0025 (5)
C90.0361 (6)0.0362 (6)0.0403 (7)0.0010 (5)0.0086 (5)0.0055 (5)
C50.0474 (8)0.0460 (7)0.0458 (8)0.0010 (6)0.0146 (6)0.0114 (6)
C10.0384 (6)0.0449 (7)0.0331 (6)0.0028 (5)0.0089 (5)0.0053 (5)
C30.0423 (7)0.0432 (7)0.0474 (8)0.0050 (5)0.0074 (6)0.0115 (6)
C130.0416 (7)0.0487 (7)0.0409 (7)0.0013 (6)0.0092 (6)0.0057 (6)
C40.0488 (8)0.0391 (7)0.0623 (9)0.0076 (6)0.0145 (7)0.0014 (6)
C120.0440 (7)0.0652 (9)0.0509 (9)0.0030 (7)0.0033 (7)0.0131 (7)
C110.0405 (7)0.0549 (8)0.0611 (9)0.0008 (6)0.0157 (7)0.0116 (7)
Geometric parameters (Å, º) top
N2—C91.4460 (16)C8—C31.3850 (17)
N2—C131.4596 (16)C8—C21.4597 (17)
N2—C101.4631 (16)C2—C11.5490 (18)
N1—C11.3618 (15)C9—H9A1.024 (14)
N1—C71.4199 (14)C9—H9B0.979 (14)
N1—C91.4736 (15)C5—C41.382 (2)
C7—C61.3765 (16)C5—H5A0.9300
C7—C81.4000 (15)C3—C41.383 (2)
O2—C21.2075 (15)C3—H3A0.9300
C10—C111.5110 (18)C13—C121.5109 (18)
C10—H10A0.9700C13—H13A0.9700
C10—H10B0.9700C13—H13B0.9700
O3—C111.4168 (16)C4—H4A0.9300
O3—C121.4217 (17)C12—H12A0.9700
O1—C11.2180 (14)C12—H12B0.9700
C6—C51.3914 (17)C11—H11A0.9700
C6—H6A0.9300C11—H11B0.9700
C9—N2—C13114.36 (10)C4—C5—C6121.82 (12)
C9—N2—C10113.97 (10)C4—C5—H5A119.1
C13—N2—C10109.92 (10)C6—C5—H5A119.1
C1—N1—C7110.17 (10)O1—C1—N1126.89 (12)
C1—N1—C9122.94 (10)O1—C1—C2126.25 (12)
C7—N1—C9126.73 (10)N1—C1—C2106.86 (10)
C6—C7—C8121.37 (11)C4—C3—C8118.27 (12)
C6—C7—N1127.92 (11)C4—C3—H3A120.9
C8—C7—N1110.71 (10)C8—C3—H3A120.9
N2—C10—C11109.34 (11)N2—C13—C12109.35 (11)
N2—C10—H10A109.8N2—C13—H13A109.8
C11—C10—H10A109.8C12—C13—H13A109.8
N2—C10—H10B109.8N2—C13—H13B109.8
C11—C10—H10B109.8C12—C13—H13B109.8
H10A—C10—H10B108.3H13A—C13—H13B108.3
C11—O3—C12109.81 (11)C3—C4—C5120.66 (13)
C7—C6—C5117.28 (11)C3—C4—H4A119.7
C7—C6—H6A121.4C5—C4—H4A119.7
C5—C6—H6A121.4O3—C12—C13111.11 (12)
C3—C8—C7120.55 (11)O3—C12—H12A109.4
C3—C8—C2132.02 (11)C13—C12—H12A109.4
C7—C8—C2107.44 (10)O3—C12—H12B109.4
O2—C2—C8131.85 (13)C13—C12—H12B109.4
O2—C2—C1123.32 (12)H12A—C12—H12B108.0
C8—C2—C1104.82 (10)O3—C11—C10111.53 (11)
N2—C9—N1116.55 (10)O3—C11—H11A109.3
N2—C9—H9A110.1 (7)C10—C11—H11A109.3
N1—C9—H9A102.5 (7)O3—C11—H11B109.3
N2—C9—H9B108.9 (7)C10—C11—H11B109.3
N1—C9—H9B106.9 (7)H11A—C11—H11B108.0
H9A—C9—H9B111.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.932.473.349 (2)158
C5—H5A···O2ii0.932.523.216 (2)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H14N2O3
Mr246.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.608 (2), 8.2818 (17), 12.595 (3)
β (°) 100.20 (3)
V3)1191.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.979, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7614, 3556, 2275
Rint0.021
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.144, 0.99
No. of reflections3556
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.932.473.349 (2)158
C5—H5A···O2ii0.932.523.216 (2)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported financially by two grants from the National Science Foundation of China (No. 50874092) and the Natural Science Research Plan Projects of Shaanxi Science and Technology Department (SJ08B20).

References

First citationBruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1988). J. Neurochem. 51, 656–659.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGlover, V., Reveley, M. A. & Sandler, M. (1980). Biochem. Pharmacol. 29, 467–470.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMaysinger, D. & Movrin, M. (1980). Arzneim. Forschung. 30, 1839–1840.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarma, R. S. & Nobles, W. L. (1966). J. Heterocycl. Chem. 3, 462–465.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds