organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,4-Dimeth­­oxy­phen­yl)(4-fluoro­phen­yl)methanone

aDepartment of Quality Detection and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: jyzhang2004@126.com

(Received 22 May 2010; accepted 2 June 2010; online 5 June 2010)

In the title compound, C15H13FO3, the dihedral angle between the two aromatic rings is 52.78 (8)°. In the crystal, inter­molecular C—H⋯O hydrogen bonds link mol­ecules into chains running parallel to the c axis.

Related literature

For applications of benzophenone and its derivatives, see: Riechers et al. (1996[Riechers, H., Albrecht, H.-P. & Amberg, W. (1996). J. Med. Chem. 39, 2123-2128..]); Khanum et al. (2009[Khanum, S. A., Girish, V., Suparshwa, S. S., Khanum, N. F. (2009). Bioorg. Med. Chem. Lett. 19, 1887-1891.]); Schlecht et al. (2008[Schlecht, C., Klammer, H., Frauendorf, H., Wuttke, W. & Jarry, H. (2008). Toxicology, 245, 11-17.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13FO3

  • Mr = 260.25

  • Monoclinic, P 21 /c

  • a = 10.8926 (9) Å

  • b = 11.3632 (11) Å

  • c = 10.8369 (10) Å

  • β = 108.285 (1)°

  • V = 1273.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.48 × 0.38 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.985

  • 6183 measured reflections

  • 2227 independent reflections

  • 1391 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.173

  • S = 1.00

  • 2227 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.58 3.343 (3) 139
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzophenone derivatives are an important class of compounds having a broad spectrum of applications in the chemical and biochemical fields (Riechers et al., 1996; Khanum et al., 2009), and are widely used as UV-screens to protect industrial products from light induced damage (Schlecht et al., 2008). In order to develop new applications for benzophenone and its derivatives, structural modifications of benzophenone have been extensively investigated. As a contribution to this field, we report here the crystal structure of the title compound.

The molecular structure of title compound is shown in Fig. 1. The dihedral angle formed by the benzene rings 52.78 (8)°. In the crystal packing (Fig. 2), intermolecular C—H···O hydrogen bonds (Table 1) link molecules into chains running parallel to the c axis.

Related literature top

For applications of benzophenone and its derivatives, see: Riechers et al. (1996); Khanum et al. (2009); Schlecht et al. (2008).

Experimental top

To a solution of 1,2-dimethoxybenzene (138 g, 1.00 mol) in dichloromethane (2.00 l), AlCl3 (199 g, 1.50 mol) was added. Then 4-fluorobenzoyl chloride (158 g, 2.00 mol) was added. The mixture was stirred at room temperature for 2 h, followed by filtration and purification by crystallization from ethyl acetate, giving the title compound as a colourless crystalline solid.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with C—H = 0.93-0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms are omitted.
[Figure 2] Fig. 2. Crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
(3,4-Dimethoxyphenyl)(4-fluorophenyl)methanone top
Crystal data top
C15H13FO3F(000) = 544
Mr = 260.25Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1872 reflections
a = 10.8926 (9) Åθ = 2.7–26.1°
b = 11.3632 (11) ŵ = 0.10 mm1
c = 10.8369 (10) ÅT = 298 K
β = 108.285 (1)°Needle, colourless
V = 1273.6 (2) Å30.48 × 0.38 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2227 independent reflections
Radiation source: fine-focus sealed tube1391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 712
Tmin = 0.952, Tmax = 0.985k = 1313
6183 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0915P)2]
where P = (Fo2 + 2Fc2)/3
2227 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H13FO3V = 1273.6 (2) Å3
Mr = 260.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8926 (9) ŵ = 0.10 mm1
b = 11.3632 (11) ÅT = 298 K
c = 10.8369 (10) Å0.48 × 0.38 × 0.15 mm
β = 108.285 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2227 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1391 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.985Rint = 0.083
6183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2227 reflectionsΔρmin = 0.32 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.13858 (16)0.52452 (18)0.33034 (17)0.0864 (7)
O10.46324 (18)0.62209 (18)0.24672 (19)0.0638 (6)
O20.88706 (15)0.85244 (17)0.40525 (17)0.0555 (6)
O30.86314 (15)1.01546 (15)0.23481 (17)0.0512 (5)
C10.4782 (2)0.6672 (2)0.1495 (3)0.0433 (6)
C20.5825 (2)0.7552 (2)0.1622 (2)0.0384 (6)
C30.6868 (2)0.7580 (2)0.2777 (2)0.0420 (6)
H30.69280.70150.34140.050*
C40.7801 (2)0.8432 (2)0.2976 (2)0.0405 (6)
C50.7682 (2)0.9316 (2)0.2037 (2)0.0392 (6)
C60.6666 (2)0.9291 (2)0.0898 (2)0.0416 (6)
H60.65970.98650.02690.050*
C70.5739 (2)0.8405 (2)0.0688 (2)0.0399 (6)
H70.50570.83870.00860.048*
C80.8996 (3)0.7711 (3)0.5078 (3)0.0682 (9)
H8A0.82720.77900.53970.102*
H8B0.97820.78670.57680.102*
H8C0.90200.69250.47610.102*
C90.8510 (3)1.1108 (3)0.1468 (3)0.0664 (9)
H9A0.85061.08110.06370.100*
H9B0.92251.16370.17980.100*
H9C0.77151.15190.13740.100*
C100.3889 (2)0.6332 (2)0.0193 (2)0.0396 (6)
C110.2630 (2)0.6010 (2)0.0084 (3)0.0475 (7)
H110.23550.60420.08130.057*
C120.1782 (3)0.5644 (2)0.1084 (3)0.0545 (7)
H120.09380.54310.11540.065*
C130.2215 (3)0.5604 (3)0.2141 (3)0.0554 (8)
C140.3456 (3)0.5881 (3)0.2083 (3)0.0559 (8)
H140.37280.58160.28120.067*
C150.4290 (2)0.6260 (2)0.0911 (3)0.0462 (7)
H150.51310.64700.08540.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0788 (12)0.1100 (15)0.0628 (12)0.0321 (12)0.0113 (9)0.0168 (10)
O10.0677 (13)0.0799 (14)0.0502 (12)0.0215 (11)0.0274 (10)0.0033 (10)
O20.0450 (11)0.0706 (13)0.0473 (11)0.0113 (9)0.0094 (9)0.0127 (9)
O30.0463 (11)0.0513 (11)0.0573 (12)0.0076 (9)0.0183 (8)0.0060 (9)
C10.0400 (14)0.0476 (15)0.0491 (16)0.0021 (12)0.0239 (12)0.0029 (12)
C20.0338 (13)0.0456 (14)0.0422 (14)0.0041 (11)0.0210 (10)0.0028 (11)
C30.0398 (14)0.0480 (15)0.0446 (15)0.0002 (12)0.0223 (11)0.0055 (12)
C40.0317 (13)0.0504 (15)0.0427 (15)0.0043 (12)0.0165 (11)0.0016 (12)
C50.0366 (13)0.0412 (14)0.0457 (15)0.0032 (12)0.0215 (11)0.0022 (11)
C60.0440 (14)0.0427 (14)0.0433 (14)0.0050 (12)0.0210 (11)0.0036 (11)
C70.0353 (13)0.0463 (14)0.0402 (14)0.0060 (12)0.0148 (10)0.0010 (11)
C80.0643 (19)0.080 (2)0.0492 (17)0.0084 (17)0.0021 (14)0.0185 (16)
C90.076 (2)0.0543 (17)0.069 (2)0.0170 (16)0.0224 (16)0.0105 (15)
C100.0358 (13)0.0402 (14)0.0490 (16)0.0007 (11)0.0225 (11)0.0006 (11)
C110.0426 (14)0.0522 (16)0.0568 (17)0.0010 (13)0.0286 (12)0.0019 (13)
C120.0389 (14)0.0595 (18)0.0688 (19)0.0084 (14)0.0223 (13)0.0028 (15)
C130.0566 (17)0.0554 (18)0.0515 (17)0.0119 (15)0.0132 (13)0.0072 (14)
C140.0630 (18)0.0610 (18)0.0541 (18)0.0105 (15)0.0332 (14)0.0102 (14)
C150.0396 (14)0.0513 (15)0.0560 (17)0.0068 (13)0.0267 (12)0.0057 (13)
Geometric parameters (Å, º) top
F1—C131.362 (3)C8—H8A0.9600
O1—C11.227 (3)C8—H8B0.9600
O2—C41.370 (3)C8—H8C0.9600
O2—C81.419 (3)C9—H9A0.9600
O3—C51.368 (3)C9—H9B0.9600
O3—C91.422 (3)C9—H9C0.9600
C1—C21.488 (3)C10—C111.388 (3)
C1—C101.493 (3)C10—C151.399 (3)
C2—C71.383 (3)C11—C121.377 (4)
C2—C31.402 (3)C11—H110.9300
C3—C41.370 (3)C12—C131.370 (4)
C3—H30.9300C12—H120.9300
C4—C51.407 (4)C13—C141.370 (4)
C5—C61.376 (3)C14—C151.378 (4)
C6—C71.393 (3)C14—H140.9300
C6—H60.9300C15—H150.9300
C7—H70.9300
C4—O2—C8117.6 (2)H8A—C8—H8C109.5
C5—O3—C9117.5 (2)H8B—C8—H8C109.5
O1—C1—C2120.3 (2)O3—C9—H9A109.5
O1—C1—C10118.7 (2)O3—C9—H9B109.5
C2—C1—C10120.9 (2)H9A—C9—H9B109.5
C7—C2—C3119.2 (2)O3—C9—H9C109.5
C7—C2—C1121.9 (2)H9A—C9—H9C109.5
C3—C2—C1118.6 (2)H9B—C9—H9C109.5
C4—C3—C2120.6 (2)C11—C10—C15118.5 (2)
C4—C3—H3119.7C11—C10—C1118.8 (2)
C2—C3—H3119.7C15—C10—C1122.6 (2)
C3—C4—O2125.4 (2)C12—C11—C10121.2 (2)
C3—C4—C5119.7 (2)C12—C11—H11119.4
O2—C4—C5114.9 (2)C10—C11—H11119.4
O3—C5—C6124.7 (2)C13—C12—C11118.1 (2)
O3—C5—C4115.4 (2)C13—C12—H12121.0
C6—C5—C4119.9 (2)C11—C12—H12121.0
C5—C6—C7120.0 (2)F1—C13—C12118.7 (2)
C5—C6—H6120.0F1—C13—C14118.0 (3)
C7—C6—H6120.0C12—C13—C14123.2 (3)
C2—C7—C6120.5 (2)C13—C14—C15118.0 (3)
C2—C7—H7119.8C13—C14—H14121.0
C6—C7—H7119.8C15—C14—H14121.0
O2—C8—H8A109.5C14—C15—C10120.9 (2)
O2—C8—H8B109.5C14—C15—H15119.5
H8A—C8—H8B109.5C10—C15—H15119.5
O2—C8—H8C109.5
O1—C1—C2—C7153.7 (3)C3—C2—C7—C60.9 (3)
C10—C1—C2—C725.5 (3)C1—C2—C7—C6173.2 (2)
O1—C1—C2—C320.4 (3)C5—C6—C7—C20.5 (3)
C10—C1—C2—C3160.4 (2)O1—C1—C10—C1130.4 (3)
C7—C2—C3—C40.7 (4)C2—C1—C10—C11148.8 (2)
C1—C2—C3—C4175.1 (2)O1—C1—C10—C15145.9 (3)
C2—C3—C4—O2178.5 (2)C2—C1—C10—C1534.9 (3)
C2—C3—C4—C52.7 (4)C15—C10—C11—C121.0 (4)
C8—O2—C4—C33.3 (4)C1—C10—C11—C12177.4 (2)
C8—O2—C4—C5175.4 (2)C10—C11—C12—C130.2 (4)
C9—O3—C5—C64.3 (3)C11—C12—C13—F1179.9 (2)
C9—O3—C5—C4176.1 (2)C11—C12—C13—C141.6 (5)
C3—C4—C5—O3177.30 (19)F1—C13—C14—C15179.1 (2)
O2—C4—C5—O31.6 (3)C12—C13—C14—C152.4 (5)
C3—C4—C5—C63.1 (4)C13—C14—C15—C101.5 (4)
O2—C4—C5—C6178.1 (2)C11—C10—C15—C140.2 (4)
O3—C5—C6—C7179.0 (2)C1—C10—C15—C14176.5 (2)
C4—C5—C6—C71.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.583.343 (3)139
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H13FO3
Mr260.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.8926 (9), 11.3632 (11), 10.8369 (10)
β (°) 108.285 (1)
V3)1273.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.38 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6183, 2227, 1391
Rint0.083
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.173, 1.00
No. of reflections2227
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.32

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.583.343 (3)139.2
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 20572103).

References

First citationKhanum, S. A., Girish, V., Suparshwa, S. S., Khanum, N. F. (2009). Bioorg. Med. Chem. Lett. 19, 1887–1891.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRiechers, H., Albrecht, H.-P. & Amberg, W. (1996). J. Med. Chem. 39, 2123–2128..  CrossRef CAS PubMed Web of Science Google Scholar
First citationSchlecht, C., Klammer, H., Frauendorf, H., Wuttke, W. & Jarry, H. (2008). Toxicology, 245, 11–17.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds