organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3094-o3095

Ethyl 2-(3,3-di­butyl­thio­ureido)-4,5,6,7-tetra­hydro­benzo[b]thio­phene-3-carboxyl­ate

aInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China
*Correspondence e-mail: zengken@126.com

(Received 23 October 2009; accepted 9 November 2009; online 14 November 2009)

In the title compound, C20H32N2O2S2, the cyclo­hexene ring is disordered over two half-boat conformations with occupancy factors of 0.71:0.29. One n-butyl chain is also disordered over two positions with occupancy factors of 0.83:0.17. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond.

Related literature

For the synthesis and biological activity of thienopyrimidin-4(3H)-one derivatives, see: De Laszlo et al. (1992a[De Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992a). Chem. Abstr. 118, 22249v.],b[De Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992b). Eur. Patent 502725.]); Taguchi et al. (1993a[Taguchi, M., Ota, T. & Hatayama, K. (1993a). Chem. Abstr. 119, 160309m.],b[Taguchi, M., Ota, T. & Hatayama, K. (1993b). World Patent 9303040.]); Walter (1999a[Walter, H. (1999a). Chem. Abstr. 130, 237580e.],b[Walter, H. (1999b). World Patent 9911631.]); Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Santagati et al. (2003[Santagati, A., Marrazzo, A. & Granata, G. (2003). J. Heterocycl. Chem. 40, 869-873.]); Abbott GmbH Co KG (2004a[Abbott GmbH & Co. KG (2004a). Chem. Abstr. 141, 89095.], 2004b[Abbott GmbH & Co. KG (2004b). German Patent 10259382.]); Walter & Zeun (2004[Walter, H. & Zeun, R. (2004). Chimia, 57, 692-696.]); Ford et al. (2004a[Ford, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004a). Chem. Abstr. 142, 74599.],b[Ford, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004b). World Patent 2004111057.]); Duval et al. (2005[Duval, E., Case, A., Stein, R. L. & Cuny, G. D. (2005). Bioorg. Med. Chem. Lett. 15, 1885-1889.]); Waehaelae et al. (2004a[Waehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004a). Chem. Abstr. 142, 74590.],b[Waehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004b). World Patent 2004110459.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related structures, see: Xu et al. (2005[Xu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, o2789-o2790.]); Zeng et al. (2005[Zeng, X.-H., Wang, H.-M., Luo, Z.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o4160-o4161.], 2006[Zeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731-o732.], 2007[Zeng, X.-H., Zhao, L.-H., Luo, H. & Long, J.-Y. (2007). Acta Cryst. E63, o3004.], 2008[Zeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535.], 2009[Zeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142-o1143.]); Wang et al. (2007[Wang, H.-M., Zeng, X.-H., Zheng, A.-H., Tian, J.-H. & He, T.-Y. (2007). Acta Cryst. E63, o4365.], 2008[Wang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.]); Zheng et al. (2007[Zheng, A.-H., Long, J.-Y., Zeng, X.-H. & Wang, H.-M. (2007). Acta Cryst. E63, o1142-o1144.]); Xie et al. (2008[Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32N2O2S2

  • Mr = 396.60

  • Monoclinic, P 21 /c

  • a = 10.9311 (11) Å

  • b = 21.715 (3) Å

  • c = 9.6841 (3) Å

  • β = 107.711 (12)°

  • V = 2189.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 292 K

  • 0.36 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.903, Tmax = 0.938

  • 12194 measured reflections

  • 4036 independent reflections

  • 3460 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.153

  • S = 1.21

  • 4036 reflections

  • 280 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 (3) 1.89 (2) 2.643 (4) 145 (3)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The derivatives of heterocycles containing the thienopyrimidine system, which are well known bioisosteres of quinazolines, are of great importance because of their remarkable biological properties, including antimicrobial or antifungal activities (De Laszlo et al., 1992a,b; Walter, 1999a,b; Ding et al., 2004; Walter & Zeun, 2004), significant 5-HT1A and 5-HT1B receptor activities (Taguchi et al., 1993a,b; Abbott GmbH & Co. KG, 2004a,b), potential selective COX-2 enzyme inhibitor activity (Santagati, et al., 2004), 17beta-hydroxysteroid dehydrogenase inhibitor activity (Waehaelae et al., 2004a,b), potassium channel inhibitor activity (Ford et al., 2004a,b), and tissue transglutaminase inhibitor activity (Duval et al., 2005). Recently, our group has been engaged in the preparation of derivatives of thienopyrimidin-4(3H)-one via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with CS2. As a continuation of our research for new biologically active heterocycles, the title compound was obtained as an intermediate product from beta-ethoxycarbonyl iminophosphorane in CS2 and structurally characterized in order to elucidate the cyclization mechanism involved in the reaction.

In the title compound (Fig. 1), bond lengths within the benzothiophene ring system are in good agreement with those observed for closely related structures (Xu et al., 2005; Zeng et al., 2005, 2006, 2007, 2008, 2009; Wang et al., 2007, 2008; Zheng et al., 2007; Xie et al., 2008), and in the ranges of values observed in previously reported structures in the Cambridge Structural Database (Version 5.26; Allen, 2002). The theiophene ring is planar, with a maximum displacement of 0.008 (3)Å for atom C8. The attached cyclohexene ring is disordered over two half-chair conformations with site occupancy factors of 0.71:0.29. A n-butyl chain is also disordered over two positions with site occupancy factors of 0.83:0.17. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bond (Table 1). The crystal packing is enforced only by van der Waals interactions.

Related literature top

For the synthesis and biological activity of thienopyrimidin-4(3H)-one derivatives, see: De Laszlo et al. (1992a,b); Taguchi et al. (1993a,b); Walter (1999a,b); Ding et al. (2004); Santagati et al. (2003); Abbott GmbH Co KG (2004a, 2004b); Walter & Zeun (2004); Ford et al. (2004a,b); Duval et al. (2005); Waehaelae et al. (2004a,b). For a description of the Cambridge Structural Database, see: Allen (2002). For related structures, see: Xu et al. (2005); Zeng et al. (2005, 2006, 2007, 2008, 2009); Wang et al. (2007, 2008); Zheng et al. (2007); Xie et al. (2008).

Experimental top

To a solution of ethyl 2-thiocyanato-4,5,6,7-tetrahydrobenzo[b]thiophene -3-carboxylate (3 mmol) prepared according to Zeng et al. (2005) in CH3CN (15 ml) was added dibutylamine (3 mmol) at room temperature, and the reaction mixture was stirred for 6 h. The solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give the title compound in yield of 81% (m.p. 442 K). Elemental analysis:calculated for C20H32N2O2S2: C, 60.57; H, 8.13; N, 7.06. Found: C, 59.34; H, 8.55; N, 6.67%. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a hexane/dichloromethane (1:3 v/v) solution at room temperature.

Refinement top

The C4, C5 carbon atoms of the cyclohexene ring and the C15, C16 carbon atoms of one n-butyl chain are disordered over two positions with site occupancy factors of 0.71:0.29 and 0.83:0.17, respectively. During the refinement, the C—C bond lengths involving the disordered carbon atoms have been constrained to be 1.54 (1) Å. The H atom attached to atom N1 was located in a difference Fourier map and allowed to ride with a restraint of N—H = 0.86 Å. Other H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.96–0.97 Å, and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are represented by circles of arbitrary size. Only the major components of the disordered groups are shown.
Ethyl 2-(3,3-dibutylthioureido)-4,5,6,7-tetrahydrobenzo[b]thiophene- 3-carboxylate top
Crystal data top
C20H32N2O2S2F(000) = 856
Mr = 396.60Dx = 1.203 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9055 reflections
a = 10.9311 (11) Åθ = 2.2–27.6°
b = 21.715 (3) ŵ = 0.26 mm1
c = 9.6841 (3) ÅT = 292 K
β = 107.711 (12)°Block, colourless
V = 2189.8 (4) Å30.36 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4036 independent reflections
Radiation source: fine-focus sealed tube3460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.903, Tmax = 0.938k = 2126
12194 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0275P)2 + 2.0031P]
where P = (Fo2 + 2Fc2)/3
4036 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.30 e Å3
13 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H32N2O2S2V = 2189.8 (4) Å3
Mr = 396.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9311 (11) ŵ = 0.26 mm1
b = 21.715 (3) ÅT = 292 K
c = 9.6841 (3) Å0.36 × 0.30 × 0.25 mm
β = 107.711 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4036 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3460 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.938Rint = 0.027
12194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07313 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.30 e Å3
4036 reflectionsΔρmin = 0.23 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0984 (4)0.00230 (16)0.7833 (4)0.0631 (9)
C21.1175 (5)0.0488 (2)0.9023 (5)0.0856 (12)
H2A1.04460.07650.88040.103*0.71
H2B1.12370.02800.99280.103*0.71
H2C1.07140.03610.96870.103*0.29
H2D1.08320.08820.86160.103*0.29
C31.2396 (7)0.0852 (4)0.9174 (11)0.097 (2)0.71
H3A1.26600.10481.01190.117*0.71
H3B1.22070.11750.84480.117*0.71
C41.3461 (8)0.0488 (4)0.9018 (8)0.093 (2)0.71
H4A1.42020.07540.91470.112*0.71
H4B1.36860.01770.97710.112*0.71
C4'1.315 (2)0.0763 (7)0.8441 (17)0.077 (5)0.29
H4'11.40180.09180.88320.092*0.29
H4'21.26270.10810.78350.092*0.29
C3'1.2569 (14)0.0586 (11)0.9758 (17)0.113 (9)0.29
H3'11.27050.09181.04580.135*0.29
H3'21.29680.02151.02510.135*0.29
C51.3142 (4)0.01737 (18)0.7532 (4)0.0751 (10)
H5A1.37870.01360.75540.090*0.71
H5B1.31630.04760.68030.090*0.71
H5C1.37890.01160.80670.090*0.29
H5D1.33390.02860.66530.090*0.29
C61.1838 (3)0.01239 (15)0.7127 (3)0.0577 (8)
C71.1347 (3)0.05951 (15)0.6064 (3)0.0551 (8)
C81.0133 (3)0.07897 (14)0.6033 (3)0.0542 (7)
C91.1975 (3)0.08581 (17)0.5067 (4)0.0634 (9)
C101.3820 (4)0.0835 (2)0.4231 (5)0.0951 (14)
H10A1.35810.12590.39670.114*
H10B1.47350.08240.47300.114*
C111.3540 (5)0.0462 (2)0.2931 (5)0.1069 (16)
H11A1.37410.00400.31930.160*
H11B1.40480.06020.23400.160*
H11C1.26460.04980.23980.160*
C120.8369 (3)0.15459 (17)0.5066 (4)0.0659 (9)
C130.6951 (5)0.2433 (2)0.4072 (6)0.1029 (15)
H13A0.67560.24140.49830.123*
H13B0.71470.28580.39110.123*
C140.5827 (5)0.2238 (3)0.2904 (6)0.1242 (19)
H14A0.56860.18000.29800.149*0.83
H14B0.59570.23170.19730.149*0.83
H14C0.53730.19050.32030.149*0.17
H14D0.60660.21060.20640.149*0.17
C150.4615 (9)0.2616 (5)0.3037 (12)0.181 (5)0.83
H15A0.38470.23960.24960.217*0.83
H15B0.46410.26120.40470.217*0.83
C160.4496 (12)0.3174 (5)0.2607 (16)0.232 (7)0.83
H16A0.53050.33810.29770.348*0.83
H16B0.38640.33760.29530.348*0.83
H16C0.42280.31840.15670.348*0.83
C15'0.4923 (18)0.2749 (12)0.213 (3)0.090 (8)0.17
H15C0.53650.31400.23720.108*0.17
H15D0.47270.26900.10940.108*0.17
C16'0.372 (2)0.2782 (14)0.248 (5)0.125 (13)0.17
H16D0.31800.30900.18920.188*0.17
H16E0.38970.28880.34870.188*0.17
H16F0.32980.23900.23030.188*0.17
C170.9008 (4)0.23002 (19)0.3483 (5)0.0814 (11)
H17A0.85360.25350.26370.098*
H17B0.94490.19680.31620.098*
C180.9998 (4)0.2719 (2)0.4523 (5)0.0897 (13)
H18A0.95530.30580.48130.108*
H18B1.04370.24870.53880.108*
C191.0961 (5)0.2970 (2)0.3882 (5)0.1017 (15)
H19A1.05230.31580.29550.122*
H19B1.14850.26350.37090.122*
C201.1828 (5)0.3447 (2)0.4862 (6)0.126 (2)
H20A1.13210.37920.49810.190*
H20B1.24650.35820.44320.190*
H20C1.22440.32660.57910.190*
N10.9493 (3)0.12572 (14)0.5138 (3)0.0637 (7)
H1A0.997 (3)0.1387 (16)0.464 (3)0.076*
N20.8108 (3)0.20414 (16)0.4177 (4)0.0801 (9)
O11.3122 (2)0.06116 (13)0.5196 (3)0.0769 (7)
O21.1519 (3)0.12628 (13)0.4189 (3)0.0869 (8)
S10.95706 (9)0.03954 (4)0.72506 (10)0.0662 (3)
S20.74212 (10)0.13005 (5)0.60210 (13)0.0823 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.080 (2)0.060 (2)0.0549 (19)0.0045 (17)0.0284 (17)0.0010 (16)
C20.106 (3)0.085 (3)0.075 (3)0.006 (2)0.041 (2)0.018 (2)
C30.109 (6)0.097 (6)0.093 (6)0.026 (4)0.040 (5)0.035 (5)
C40.094 (5)0.099 (6)0.083 (6)0.014 (5)0.021 (5)0.019 (4)
C4'0.083 (12)0.078 (11)0.068 (10)0.020 (9)0.021 (9)0.004 (8)
C3'0.18 (2)0.106 (17)0.053 (10)0.055 (16)0.040 (12)0.009 (9)
C50.079 (2)0.074 (2)0.077 (3)0.010 (2)0.030 (2)0.006 (2)
C60.0649 (19)0.0570 (19)0.0541 (18)0.0018 (16)0.0225 (15)0.0035 (15)
C70.0634 (19)0.0523 (17)0.0542 (18)0.0054 (15)0.0248 (15)0.0023 (14)
C80.0610 (18)0.0520 (18)0.0511 (17)0.0049 (15)0.0194 (15)0.0051 (14)
C90.068 (2)0.062 (2)0.067 (2)0.0079 (17)0.0303 (18)0.0015 (18)
C100.081 (3)0.113 (4)0.108 (4)0.012 (3)0.053 (3)0.013 (3)
C110.111 (4)0.130 (4)0.102 (4)0.005 (3)0.065 (3)0.004 (3)
C120.062 (2)0.065 (2)0.068 (2)0.0013 (17)0.0149 (17)0.0078 (18)
C130.098 (3)0.094 (3)0.116 (4)0.013 (3)0.031 (3)0.008 (3)
C140.090 (4)0.154 (5)0.118 (4)0.010 (4)0.015 (3)0.014 (4)
C150.111 (7)0.256 (15)0.161 (9)0.068 (8)0.021 (6)0.083 (9)
C160.180 (11)0.235 (14)0.296 (17)0.081 (11)0.096 (11)0.137 (14)
C15'0.09 (2)0.087 (19)0.09 (2)0.015 (16)0.029 (17)0.017 (16)
C16'0.10 (3)0.10 (2)0.18 (4)0.02 (2)0.05 (3)0.03 (2)
C170.084 (3)0.076 (3)0.079 (3)0.008 (2)0.017 (2)0.016 (2)
C180.092 (3)0.086 (3)0.087 (3)0.001 (2)0.020 (2)0.009 (2)
C190.109 (4)0.089 (3)0.104 (4)0.005 (3)0.027 (3)0.015 (3)
C200.119 (4)0.102 (4)0.137 (5)0.025 (3)0.007 (4)0.003 (4)
N10.0641 (17)0.0633 (18)0.0680 (19)0.0034 (14)0.0262 (14)0.0037 (15)
N20.073 (2)0.076 (2)0.090 (2)0.0137 (17)0.0216 (18)0.0066 (19)
O10.0683 (15)0.0907 (19)0.0836 (18)0.0001 (14)0.0410 (14)0.0126 (14)
O20.094 (2)0.0862 (19)0.095 (2)0.0115 (16)0.0501 (17)0.0313 (16)
S10.0714 (6)0.0700 (6)0.0664 (6)0.0047 (4)0.0345 (4)0.0008 (4)
S20.0682 (6)0.0924 (8)0.0923 (8)0.0011 (5)0.0333 (5)0.0054 (6)
Geometric parameters (Å, º) top
C1—C61.352 (4)C12—N21.353 (5)
C1—C21.498 (5)C12—N11.362 (4)
C1—S11.732 (4)C12—S21.672 (4)
C2—C3'1.488 (15)C13—C141.457 (6)
C2—C31.520 (8)C13—N21.502 (5)
C2—H2A0.9700C13—H13A0.9700
C2—H2B0.9700C13—H13B0.9700
C2—H2C0.9700C14—C15'1.522 (16)
C2—H2D0.9700C14—C151.597 (9)
C3—C41.452 (11)C14—H14A0.9700
C3—H3A0.9700C14—H14B0.9700
C3—H3B0.9700C14—H14C0.9700
C4—C51.534 (7)C14—H14D0.9700
C4—H4A0.9700C15—C161.274 (11)
C4—H4B0.9700C15—H15A0.9700
C4'—C51.552 (14)C15—H15B0.9700
C4'—C3'1.63 (2)C16—H16A0.9600
C4'—H4'10.9700C16—H16B0.9600
C4'—H4'20.9700C16—H16C0.9600
C3'—H3'10.9700C15'—C16'1.454 (19)
C3'—H3'20.9700C15'—H15C0.9700
C5—C61.505 (5)C15'—H15D0.9700
C5—H5A0.9700C16'—H16D0.9600
C5—H5B0.9700C16'—H16E0.9600
C5—H5C0.9700C16'—H16F0.9600
C5—H5D0.9700C17—N21.461 (5)
C6—C71.435 (4)C17—C181.532 (6)
C7—C81.385 (4)C17—H17A0.9700
C7—C91.460 (4)C17—H17B0.9700
C8—N11.380 (4)C18—C191.480 (6)
C8—S11.715 (3)C18—H18A0.9700
C9—O21.219 (4)C18—H18B0.9700
C9—O11.333 (4)C19—C201.524 (6)
C10—C111.449 (6)C19—H19A0.9700
C10—O11.458 (4)C19—H19B0.9700
C10—H10A0.9700C20—H20A0.9600
C10—H10B0.9700C20—H20B0.9600
C11—H11A0.9600C20—H20C0.9600
C11—H11B0.9600N1—H1A0.86 (3)
C11—H11C0.9600
C6—C1—C2126.3 (4)C10—C11—H11B109.5
C6—C1—S1113.3 (3)H11A—C11—H11B109.5
C2—C1—S1120.4 (3)C10—C11—H11C109.5
C3'—C2—C1110.3 (8)H11A—C11—H11C109.5
C1—C2—C3109.7 (4)H11B—C11—H11C109.5
C3'—C2—H2A132.0N2—C12—N1114.3 (3)
C1—C2—H2A109.7N2—C12—S2124.0 (3)
C3—C2—H2A109.7N1—C12—S2121.7 (3)
C3'—C2—H2B81.6C14—C13—N2112.5 (4)
C1—C2—H2B109.7C14—C13—H13A109.1
C3—C2—H2B109.7N2—C13—H13A109.1
H2A—C2—H2B108.2C14—C13—H13B109.1
C3'—C2—H2C112.7N2—C13—H13B109.1
C1—C2—H2C109.8H13A—C13—H13B107.8
C3—C2—H2C134.6C13—C14—C15'116.0 (11)
H2A—C2—H2C76.3C13—C14—C15108.2 (6)
C3'—C2—H2D106.3C13—C14—H14A110.1
C1—C2—H2D109.6C15'—C14—H14A131.1
C3—C2—H2D78.4C15—C14—H14A110.1
H2B—C2—H2D133.7C13—C14—H14B110.1
H2C—C2—H2D107.8C15—C14—H14B110.1
C4—C3—C2114.6 (6)H14A—C14—H14B108.4
C4—C3—H3A108.6C13—C14—H14C111.9
C2—C3—H3A108.6C15'—C14—H14C112.0
C4—C3—H3B108.6H14B—C14—H14C130.0
C2—C3—H3B108.6C13—C14—H14D111.0
H3A—C3—H3B107.6C15'—C14—H14D95.9
C3—C4—C5112.3 (7)C15—C14—H14D131.3
C3—C4—H4A109.2H14C—C14—H14D108.9
C5—C4—H4A109.2C16—C15—C14117.9 (11)
C3—C4—H4B109.2C16—C15—H15A107.8
C5—C4—H4B109.2C14—C15—H15A107.8
H4A—C4—H4B107.9C16—C15—H15B107.8
C5—C4'—C3'108.2 (12)C14—C15—H15B107.8
C5—C4'—H4'1110.1H15A—C15—H15B107.2
C3'—C4'—H4'1110.1C16'—C15'—C14114.7 (19)
C5—C4'—H4'2110.1C16'—C15'—H15C108.6
C3'—C4'—H4'2110.1C14—C15'—H15C108.6
H4'1—C4'—H4'2108.4C16'—C15'—H15D108.6
C2—C3'—C4'104.1 (12)C14—C15'—H15D108.6
C2—C3'—H3'1110.9H15C—C15'—H15D107.6
C4'—C3'—H3'1110.9C15'—C16'—H16D109.5
C2—C3'—H3'2110.9C15'—C16'—H16E109.5
C4'—C3'—H3'2110.9H16D—C16'—H16E109.5
H3'1—C3'—H3'2109.0C15'—C16'—H16F109.5
C6—C5—C4111.3 (4)H16D—C16'—H16F109.5
C6—C5—C4'110.0 (8)H16E—C16'—H16F109.5
C6—C5—H5A109.4N2—C17—C18111.4 (4)
C4—C5—H5A109.4N2—C17—H17A109.3
C4'—C5—H5A133.0C18—C17—H17A109.3
C6—C5—H5B109.4N2—C17—H17B109.3
C4—C5—H5B109.4C18—C17—H17B109.3
H5A—C5—H5B108.0H17A—C17—H17B108.0
C6—C5—H5C109.9C19—C18—C17113.1 (4)
C4'—C5—H5C110.8C19—C18—H18A108.9
H5B—C5—H5C130.8C17—C18—H18A108.9
C6—C5—H5D108.9C19—C18—H18B108.9
C4—C5—H5D131.5C17—C18—H18B109.0
C4'—C5—H5D109.0H18A—C18—H18B107.8
H5C—C5—H5D108.1C18—C19—C20112.1 (4)
C1—C6—C7111.5 (3)C18—C19—H19A109.2
C1—C6—C5120.8 (3)C20—C19—H19A109.2
C7—C6—C5127.6 (3)C18—C19—H19B109.2
C8—C7—C6112.3 (3)C20—C19—H19B109.2
C8—C7—C9120.4 (3)H19A—C19—H19B107.9
C6—C7—C9127.2 (3)C19—C20—H20A109.5
N1—C8—C7122.5 (3)C19—C20—H20B109.5
N1—C8—S1125.5 (2)H20A—C20—H20B109.5
C7—C8—S1112.0 (2)C19—C20—H20C109.5
O2—C9—O1121.9 (3)H20A—C20—H20C109.5
O2—C9—C7124.6 (3)H20B—C20—H20C109.5
O1—C9—C7113.5 (3)C12—N1—C8130.4 (3)
C11—C10—O1111.0 (4)C12—N1—H1A121 (3)
C11—C10—H10A109.4C8—N1—H1A109 (3)
O1—C10—H10A109.4C12—N2—C17123.9 (3)
C11—C10—H10B109.4C12—N2—C13120.2 (4)
O1—C10—H10B109.4C17—N2—C13114.9 (3)
H10A—C10—H10B108.0C9—O1—C10117.8 (3)
C10—C11—H11A109.5C8—S1—C190.86 (16)
C6—C1—C2—C3'23.4 (10)C6—C7—C9—O2179.4 (4)
S1—C1—C2—C3'155.7 (8)C8—C7—C9—O1178.1 (3)
C6—C1—C2—C39.1 (7)C6—C7—C9—O10.8 (5)
S1—C1—C2—C3171.9 (5)N2—C13—C14—C15'145.7 (11)
C3'—C2—C3—C457.1 (15)N2—C13—C14—C15171.8 (5)
C1—C2—C3—C439.8 (10)C13—C14—C15—C1676.9 (14)
C2—C3—C4—C559.9 (11)C15'—C14—C15—C1632.1 (19)
C1—C2—C3'—C4'54.3 (15)C13—C14—C15'—C16'106 (3)
C3—C2—C3'—C4'40.2 (10)C15—C14—C15'—C16'19 (2)
C5—C4'—C3'—C271.5 (17)N2—C17—C18—C19177.6 (4)
C3—C4—C5—C645.6 (9)C17—C18—C19—C20172.7 (4)
C3—C4—C5—C4'48.1 (16)N2—C12—N1—C8171.8 (3)
C3'—C4'—C5—C650.6 (14)S2—C12—N1—C87.6 (5)
C3'—C4'—C5—C447.6 (13)C7—C8—N1—C12172.7 (3)
C2—C1—C6—C7179.1 (4)S1—C8—N1—C125.7 (5)
S1—C1—C6—C70.0 (4)N1—C12—N2—C177.3 (5)
C2—C1—C6—C51.7 (6)S2—C12—N2—C17172.2 (3)
S1—C1—C6—C5177.4 (3)N1—C12—N2—C13175.5 (3)
C4—C5—C6—C115.9 (6)S2—C12—N2—C133.9 (5)
C4'—C5—C6—C117.0 (8)C18—C17—N2—C1281.1 (5)
C4—C5—C6—C7161.0 (5)C18—C17—N2—C1387.7 (4)
C4'—C5—C6—C7166.1 (7)C14—C13—N2—C1292.5 (5)
C1—C6—C7—C80.8 (4)C14—C13—N2—C1798.3 (5)
C5—C6—C7—C8176.3 (3)O2—C9—O1—C100.9 (6)
C1—C6—C7—C9178.1 (3)C7—C9—O1—C10178.9 (3)
C5—C6—C7—C94.8 (6)C11—C10—O1—C992.2 (5)
C6—C7—C8—N1177.3 (3)N1—C8—S1—C1177.4 (3)
C9—C7—C8—N13.7 (5)C7—C8—S1—C11.1 (3)
C6—C7—C8—S11.3 (4)C6—C1—S1—C80.7 (3)
C9—C7—C8—S1177.7 (3)C2—C1—S1—C8178.5 (3)
C8—C7—C9—O21.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.86 (3)1.89 (2)2.643 (4)145 (3)

Experimental details

Crystal data
Chemical formulaC20H32N2O2S2
Mr396.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)10.9311 (11), 21.715 (3), 9.6841 (3)
β (°) 107.711 (12)
V3)2189.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.36 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.903, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
12194, 4036, 3460
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.153, 1.21
No. of reflections4036
No. of parameters280
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.86 (3)1.89 (2)2.643 (4)145 (3)
 

Acknowledgements

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (2003CB114400), the National Natural Science Foundation of China (20372023, 20102001), the Educational Commission of Hubei Province of China (grant No. D20092406, B20092412), the Shiyan Municipal Science and Technology Bureau (grant No. 20061835), and Yunyang Medical College (grant Nos. 2007QDJ14, 2007QDJ15, 2007ZQB19).

References

First citationAbbott GmbH & Co. KG (2004a). Chem. Abstr. 141, 89095.  Google Scholar
First citationAbbott GmbH & Co. KG (2004b). German Patent 10259382.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992a). Chem. Abstr. 118, 22249v.  Google Scholar
First citationDe Laszlo, S. E., Patchett, A. A., Allen, E. E. & Greenlee, W. J. (1992b). Eur. Patent 502725.  Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuval, E., Case, A., Stein, R. L. & Cuny, G. D. (2005). Bioorg. Med. Chem. Lett. 15, 1885–1889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFord, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004a). Chem. Abstr. 142, 74599.  Google Scholar
First citationFord, J., Palmer, N. J., Atherall, J. F., Madge, D. J., Sherborne, B., Bushfield, M. & Stevens, E. B. (2004b). World Patent 2004111057.  Google Scholar
First citationSantagati, A., Marrazzo, A. & Granata, G. (2003). J. Heterocycl. Chem. 40, 869–873.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaguchi, M., Ota, T. & Hatayama, K. (1993a). Chem. Abstr. 119, 160309m.  Google Scholar
First citationTaguchi, M., Ota, T. & Hatayama, K. (1993b). World Patent 9303040.  Google Scholar
First citationWaehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004a). Chem. Abstr. 142, 74590.  Google Scholar
First citationWaehaelae, K., Lilienkampf, A., Alho, S., Huhtinen, K., Johansson, N., Koskimies, P. & Vihko, K. (2004b). World Patent 2004110459.  Google Scholar
First citationWalter, H. (1999a). Chem. Abstr. 130, 237580e.  Google Scholar
First citationWalter, H. (1999b). World Patent 9911631.  Google Scholar
First citationWalter, H. & Zeun, R. (2004). Chimia, 57, 692–696.  Web of Science CrossRef Google Scholar
First citationWang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-M., Zeng, X.-H., Zheng, A.-H., Tian, J.-H. & He, T.-Y. (2007). Acta Cryst. E63, o4365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, o2789–o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142–o1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731–o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Wang, H.-M., Luo, Z.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o4160–o4161.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Zhao, L.-H., Luo, H. & Long, J.-Y. (2007). Acta Cryst. E63, o3004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, A.-H., Long, J.-Y., Zeng, X.-H. & Wang, H.-M. (2007). Acta Cryst. E63, o1142–o1144.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3094-o3095
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds