organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[1-Acetyl-3-(4-meth­oxy­phen­yl)-2-pyrazolin-5-yl]phenol

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: chuandayouji217@163.com

(Received 10 October 2009; accepted 22 October 2009; online 28 October 2009)

In the title compound, C18H18N2O3, the dihedral angle formed by the benzene rings is 71.75 (4)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by inter­molecular O—H⋯O hydrogen bonds and ππ stacking inter­actions with centroid–centroid distances of 3.5511 (6) Å.

Related literature

For the biological activity of 2-pyrazoline derivatives, see: Grimm et al. (2009[Grimm, J. B., Wilson, K. J. & Witter, D. J. (2009). J. Org. Chem. 74, 6390-6393.]). For the synthesis and crystal structure of 2-pyrazoline derivatives, see: Chen et al. (2009[Chen, J., Li, H., Huang, C. & Wu, J. (2009). Acta Cryst. E65, o2147.]); Li et al. (2008[Li, J., Xiao, H.-F. & Yang, J. (2008). Acta Cryst. E64, o1391.]); Humaira et al. (2008[Humaira, P., Prince, F. I. & Amir, A. (2008). Synth. Commun. 38, 3973-3983.]); Shoman et al. (2009[Shoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068-3076.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O3

  • Mr = 310.34

  • Monoclinic, P 21 /n

  • a = 8.7037 (17) Å

  • b = 15.673 (3) Å

  • c = 11.096 (2) Å

  • β = 100.31 (3)°

  • V = 1489.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure, Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.974, Tmax = 0.978

  • 12107 measured reflections

  • 3542 independent reflections

  • 2857 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.07

  • 3542 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.87 2.7117 (13) 175
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure, Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 2-pyrazoline ring system has attracted significant interest in organic and medicinal chemistry over the past several decades. Scaffolds containing the 2-pyrazoline (4,5-dihydropyrazole) heterocycle have demonstrated a wide range of biological activity, including anticancer activity through the inhibition of kinesin spindle protein, CB1 receptor antagonism for obesity, monoamine oxidase inhibition for depression, and a host of other antibacterial, antiviral, and anti-inflammatory activities (Grimm et al., 2009). Some crystal structure of pyrazoline derivatives have been recently reported (Chen et al., 2009; Li et al., 2008). The synthesis and characterization of pyrazoline derivatives was also reported (Humaira et al., 2008; Shoman et al., 2009).

In the molecule of the title compound (Fig. 1), the five-membered 2-pyrazoline ring assumes an envelope conformation, with atom C7 displaced by 0.2690 (11) Å from the mean plane of the N1/N2/C8/C9 atoms. The benzene rings form a dihedral angle of 108.25 (4)°. In the crystal structure, centrosymmetrically related molecules are linked into dimers by intermolecular O—H···.O hydrogen bonds (Table 1) and by a ππ stacking interaction involving the C1–C6 aromatic rings, with a centroid-to-centroid distance of 3.5511 (6) Å.

Related literature top

For the biological activity of 2-pyrazoline derivatives, see: Grimm et al. (2009). For the synthesis and crystal structure of 2-pyrazoline derivatives, see: Chen et al. (2009); Li et al. (2008); Humaira et al. (2008); Shoman et al. (2009).

Experimental top

A mixture of 4'-methoxy-4-hydroxychalcone (0.64 g,2.5 mmol) and hydrazine hydrate (1 ml) in acetic acid (15 ml) was refluxed for 2 h. The reaction mixture was then cooled at room temperature, and poured into ice-cold water. The light yellow solid obtained was filtered, washed with water, dichloromethane, and dried. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone/dichloromethane (3:1 v/v) solution at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å, O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms.

Structure description top

The 2-pyrazoline ring system has attracted significant interest in organic and medicinal chemistry over the past several decades. Scaffolds containing the 2-pyrazoline (4,5-dihydropyrazole) heterocycle have demonstrated a wide range of biological activity, including anticancer activity through the inhibition of kinesin spindle protein, CB1 receptor antagonism for obesity, monoamine oxidase inhibition for depression, and a host of other antibacterial, antiviral, and anti-inflammatory activities (Grimm et al., 2009). Some crystal structure of pyrazoline derivatives have been recently reported (Chen et al., 2009; Li et al., 2008). The synthesis and characterization of pyrazoline derivatives was also reported (Humaira et al., 2008; Shoman et al., 2009).

In the molecule of the title compound (Fig. 1), the five-membered 2-pyrazoline ring assumes an envelope conformation, with atom C7 displaced by 0.2690 (11) Å from the mean plane of the N1/N2/C8/C9 atoms. The benzene rings form a dihedral angle of 108.25 (4)°. In the crystal structure, centrosymmetrically related molecules are linked into dimers by intermolecular O—H···.O hydrogen bonds (Table 1) and by a ππ stacking interaction involving the C1–C6 aromatic rings, with a centroid-to-centroid distance of 3.5511 (6) Å.

For the biological activity of 2-pyrazoline derivatives, see: Grimm et al. (2009). For the synthesis and crystal structure of 2-pyrazoline derivatives, see: Chen et al. (2009); Li et al. (2008); Humaira et al. (2008); Shoman et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
4-[1-Acetyl-3-(4-methoxyphenyl)-2-pyrazolin-5-yl]phenol top
Crystal data top
C18H18N2O3F(000) = 656
Mr = 310.34Dx = 1.384 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4953 reflections
a = 8.7037 (17) Åθ = 1.9–27.9°
b = 15.673 (3) ŵ = 0.10 mm1
c = 11.096 (2) ÅT = 113 K
β = 100.31 (3)°Block, colourless
V = 1489.2 (5) Å30.28 × 0.25 × 0.23 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3542 independent reflections
Radiation source: rotating anode2857 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.035
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω and φ scansh = 1110
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2020
Tmin = 0.974, Tmax = 0.978l = 1014
12107 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.155P]
where P = (Fo2 + 2Fc2)/3
3542 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H18N2O3V = 1489.2 (5) Å3
Mr = 310.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7037 (17) ŵ = 0.10 mm1
b = 15.673 (3) ÅT = 113 K
c = 11.096 (2) Å0.28 × 0.25 × 0.23 mm
β = 100.31 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3542 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2857 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.978Rint = 0.035
12107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
3542 reflectionsΔρmin = 0.22 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94883 (10)0.38855 (6)0.70894 (7)0.0229 (2)
H11.04330.37490.71600.034*
O20.75176 (10)0.66339 (5)0.27990 (7)0.0225 (2)
O30.11026 (10)0.27148 (5)0.04411 (8)0.0231 (2)
N10.58975 (11)0.55520 (6)0.21083 (8)0.0167 (2)
N20.43790 (11)0.52531 (6)0.17203 (8)0.0171 (2)
C10.89186 (13)0.40973 (7)0.59032 (10)0.0168 (2)
C20.75202 (13)0.45422 (7)0.56538 (10)0.0182 (2)
H20.69740.46750.62980.022*
C30.69165 (13)0.47942 (7)0.44593 (10)0.0168 (2)
H30.59580.50990.42950.020*
C40.77000 (13)0.46058 (7)0.35034 (9)0.0151 (2)
C50.90875 (13)0.41512 (7)0.37684 (10)0.0163 (2)
H50.96310.40150.31230.020*
C60.97009 (13)0.38908 (7)0.49508 (10)0.0164 (2)
H61.06460.35740.51110.020*
C70.70776 (13)0.48686 (7)0.21887 (10)0.0159 (2)
H70.79570.50530.17800.019*
C80.61163 (13)0.41600 (7)0.14272 (10)0.0171 (2)
H8A0.63860.41130.06000.021*
H8B0.62770.36000.18430.021*
C90.44632 (13)0.44749 (7)0.13665 (9)0.0160 (2)
C100.61741 (14)0.63762 (7)0.24368 (9)0.0179 (2)
C110.47757 (15)0.69509 (8)0.23326 (11)0.0233 (3)
H11A0.51210.75370.25340.035*
H11B0.41070.67590.29030.035*
H11C0.41860.69310.14930.035*
C120.30403 (13)0.39938 (7)0.09013 (9)0.0163 (2)
C130.31003 (14)0.31987 (7)0.03532 (10)0.0183 (2)
H130.40880.29560.03060.022*
C140.17471 (14)0.27499 (7)0.01279 (10)0.0191 (2)
H140.18120.22130.05120.023*
C150.03036 (13)0.30954 (7)0.00400 (10)0.0180 (2)
C160.02255 (14)0.38880 (7)0.05220 (10)0.0205 (3)
H160.07630.41230.05840.025*
C170.15651 (14)0.43316 (8)0.09871 (10)0.0199 (2)
H170.14940.48690.13690.024*
C180.11105 (16)0.19636 (9)0.11600 (13)0.0320 (3)
H18A0.06430.20870.18810.048*
H18B0.21880.17690.14240.048*
H18C0.05060.15160.06710.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (5)0.0314 (5)0.0155 (4)0.0013 (4)0.0014 (3)0.0053 (3)
O20.0226 (5)0.0219 (4)0.0217 (4)0.0016 (3)0.0006 (3)0.0008 (3)
O30.0177 (4)0.0242 (4)0.0269 (4)0.0011 (3)0.0027 (3)0.0048 (3)
N10.0146 (5)0.0173 (5)0.0179 (4)0.0021 (4)0.0021 (4)0.0011 (3)
N20.0161 (5)0.0191 (5)0.0158 (4)0.0003 (4)0.0021 (4)0.0015 (4)
C10.0174 (6)0.0167 (5)0.0158 (5)0.0046 (4)0.0017 (4)0.0015 (4)
C20.0174 (6)0.0216 (6)0.0165 (5)0.0023 (4)0.0058 (4)0.0007 (4)
C30.0133 (5)0.0182 (5)0.0190 (5)0.0000 (4)0.0035 (4)0.0002 (4)
C40.0156 (5)0.0144 (5)0.0150 (5)0.0021 (4)0.0022 (4)0.0001 (4)
C50.0174 (6)0.0155 (5)0.0168 (5)0.0007 (4)0.0054 (4)0.0013 (4)
C60.0141 (6)0.0147 (5)0.0201 (5)0.0002 (4)0.0020 (4)0.0008 (4)
C70.0154 (5)0.0172 (5)0.0155 (5)0.0033 (4)0.0040 (4)0.0002 (4)
C80.0170 (6)0.0193 (5)0.0148 (5)0.0024 (4)0.0023 (4)0.0011 (4)
C90.0177 (6)0.0187 (5)0.0118 (5)0.0037 (4)0.0030 (4)0.0018 (4)
C100.0229 (6)0.0177 (5)0.0134 (5)0.0007 (5)0.0037 (4)0.0021 (4)
C110.0261 (6)0.0176 (5)0.0260 (6)0.0033 (5)0.0046 (5)0.0011 (5)
C120.0176 (6)0.0186 (5)0.0128 (5)0.0017 (4)0.0027 (4)0.0022 (4)
C130.0174 (6)0.0196 (5)0.0184 (5)0.0042 (4)0.0043 (4)0.0007 (4)
C140.0216 (6)0.0171 (5)0.0183 (5)0.0021 (4)0.0030 (4)0.0009 (4)
C150.0179 (6)0.0212 (6)0.0146 (5)0.0003 (4)0.0019 (4)0.0029 (4)
C160.0177 (6)0.0230 (6)0.0212 (5)0.0041 (5)0.0047 (4)0.0009 (4)
C170.0210 (6)0.0202 (5)0.0188 (5)0.0041 (5)0.0040 (4)0.0017 (4)
C180.0253 (7)0.0251 (6)0.0435 (8)0.0009 (5)0.0008 (6)0.0114 (6)
Geometric parameters (Å, º) top
O1—C11.3619 (13)C8—C91.5112 (15)
O1—H10.8400C8—H8A0.9900
O2—C101.2345 (15)C8—H8B0.9900
O3—C151.3626 (14)C9—C121.4628 (16)
O3—C181.4216 (15)C10—C111.5018 (16)
N1—C101.3521 (15)C11—H11A0.9800
N1—N21.3957 (13)C11—H11B0.9800
N1—C71.4757 (14)C11—H11C0.9800
N2—C91.2873 (14)C12—C131.3917 (15)
C1—C21.3870 (16)C12—C171.4077 (16)
C1—C61.3939 (15)C13—C141.3935 (16)
C2—C31.3927 (16)C13—H130.9500
C2—H20.9500C14—C151.3875 (16)
C3—C41.3915 (15)C14—H140.9500
C3—H30.9500C15—C161.3970 (16)
C4—C51.3876 (16)C16—C171.3762 (17)
C4—C71.5193 (15)C16—H160.9500
C5—C61.3865 (15)C17—H170.9500
C5—H50.9500C18—H18A0.9800
C6—H60.9500C18—H18B0.9800
C7—C81.5474 (16)C18—H18C0.9800
C7—H71.0000
C1—O1—H1109.5N2—C9—C12120.34 (10)
C15—O3—C18117.37 (9)N2—C9—C8113.68 (10)
C10—N1—N2121.13 (9)C12—C9—C8125.91 (10)
C10—N1—C7126.07 (10)O2—C10—N1120.86 (10)
N2—N1—C7112.67 (9)O2—C10—C11122.43 (10)
C9—N2—N1108.04 (9)N1—C10—C11116.71 (10)
O1—C1—C2118.04 (10)C10—C11—H11A109.5
O1—C1—C6122.24 (10)C10—C11—H11B109.5
C2—C1—C6119.72 (10)H11A—C11—H11B109.5
C1—C2—C3120.04 (10)C10—C11—H11C109.5
C1—C2—H2120.0H11A—C11—H11C109.5
C3—C2—H2120.0H11B—C11—H11C109.5
C4—C3—C2120.82 (10)C13—C12—C17118.18 (11)
C4—C3—H3119.6C13—C12—C9121.34 (10)
C2—C3—H3119.6C17—C12—C9120.47 (10)
C5—C4—C3118.30 (10)C12—C13—C14121.61 (10)
C5—C4—C7119.33 (9)C12—C13—H13119.2
C3—C4—C7122.36 (10)C14—C13—H13119.2
C6—C5—C4121.65 (10)C15—C14—C13119.34 (10)
C6—C5—H5119.2C15—C14—H14120.3
C4—C5—H5119.2C13—C14—H14120.3
C5—C6—C1119.44 (10)O3—C15—C14125.30 (11)
C5—C6—H6120.3O3—C15—C16114.99 (10)
C1—C6—H6120.3C14—C15—C16119.69 (11)
N1—C7—C4112.31 (9)C17—C16—C15120.73 (11)
N1—C7—C8100.69 (9)C17—C16—H16119.6
C4—C7—C8113.25 (9)C15—C16—H16119.6
N1—C7—H7110.1C16—C17—C12120.42 (11)
C4—C7—H7110.1C16—C17—H17119.8
C8—C7—H7110.1C12—C17—H17119.8
C9—C8—C7101.97 (9)O3—C18—H18A109.5
C9—C8—H8A111.4O3—C18—H18B109.5
C7—C8—H8A111.4H18A—C18—H18B109.5
C9—C8—H8B111.4O3—C18—H18C109.5
C7—C8—H8B111.4H18A—C18—H18C109.5
H8A—C8—H8B109.2H18B—C18—H18C109.5
C10—N1—N2—C9174.49 (9)N1—N2—C9—C82.58 (12)
C7—N1—N2—C99.40 (11)C7—C8—C9—N212.40 (12)
O1—C1—C2—C3178.11 (10)C7—C8—C9—C12170.70 (9)
C6—C1—C2—C31.14 (16)N2—N1—C10—O2178.76 (9)
C1—C2—C3—C40.03 (17)C7—N1—C10—O23.20 (16)
C2—C3—C4—C50.80 (16)N2—N1—C10—C111.45 (14)
C2—C3—C4—C7179.90 (10)C7—N1—C10—C11177.02 (9)
C3—C4—C5—C60.41 (16)N2—C9—C12—C13170.72 (10)
C7—C4—C5—C6179.55 (10)C8—C9—C12—C135.99 (16)
C4—C5—C6—C10.73 (16)N2—C9—C12—C178.61 (15)
O1—C1—C6—C5177.70 (10)C8—C9—C12—C17174.68 (10)
C2—C1—C6—C51.51 (16)C17—C12—C13—C141.49 (16)
C10—N1—C7—C471.36 (13)C9—C12—C13—C14177.86 (10)
N2—N1—C7—C4104.52 (10)C12—C13—C14—C151.19 (16)
C10—N1—C7—C8167.87 (10)C18—O3—C15—C149.49 (16)
N2—N1—C7—C816.25 (10)C18—O3—C15—C16171.96 (10)
C5—C4—C7—N1162.58 (9)C13—C14—C15—O3178.16 (10)
C3—C4—C7—N118.32 (15)C13—C14—C15—C160.33 (16)
C5—C4—C7—C884.19 (12)O3—C15—C16—C17178.82 (10)
C3—C4—C7—C894.91 (12)C14—C15—C16—C170.18 (17)
N1—C7—C8—C915.77 (10)C15—C16—C17—C120.15 (17)
C4—C7—C8—C9104.33 (10)C13—C12—C17—C160.96 (16)
N1—N2—C9—C12179.67 (8)C9—C12—C17—C16178.39 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.872.7117 (13)175
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H18N2O3
Mr310.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.7037 (17), 15.673 (3), 11.096 (2)
β (°) 100.31 (3)
V3)1489.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.974, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
12107, 3542, 2857
Rint0.035
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.07
No. of reflections3542
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.872.7117 (13)174.5
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationChen, J., Li, H., Huang, C. & Wu, J. (2009). Acta Cryst. E65, o2147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrimm, J. B., Wilson, K. J. & Witter, D. J. (2009). J. Org. Chem. 74, 6390–6393.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHumaira, P., Prince, F. I. & Amir, A. (2008). Synth. Commun. 38, 3973–3983.  Google Scholar
First citationLi, J., Xiao, H.-F. & Yang, J. (2008). Acta Cryst. E64, o1391.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure, Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068–3076.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds