metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine-κ2N,N′)di­bromido­cadmium(II)

aCollege of Materials Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

(Received 4 October 2009; accepted 16 October 2009; online 23 October 2009)

In the title complex mol­ecule, [CdBr2(C10H8N2)2], the CdII ion is six-coordinated by two cis-arranged bromide anions and four N atoms of two bidentate 2,2′-bipyridine ligands in a distorted octa­hedral geometry. The dihedral angle formed by the mean planes through the bipyridine ligands is 87.01 (11)°. In the crystal packing, ππ stacking inter­actions [centroid–centroid distances = 3.837 (6) and 3.867 (11) Å] link adjacent complex mol­ecules into chains running parallel to the b axis. The chains are further connected by inter­molecular C—H⋯Br hydrogen bonds into a three-dimensional network.

Related literature

For the crystal structure of the isostructural manganese(II) derivative, see: Hwang & Ha (2007[Hwang, I.-C. & Ha, K. (2007). Z. Kristallogr. New Cryst. Struct. 222, 209-210.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C10H8N2)2]

  • Mr = 584.59

  • Monoclinic, P 21 /c

  • a = 8.9105 (18) Å

  • b = 14.446 (3) Å

  • c = 16.039 (3) Å

  • β = 98.66 (3)°

  • V = 2041.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.00 mm−1

  • T = 290 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.605, Tmax = 0.611

  • 18624 measured reflections

  • 4632 independent reflections

  • 3399 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.136

  • S = 1.14

  • 4632 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Br2i 0.93 2.95 3.748 (8) 144
C7—H7⋯Br2ii 0.93 2.98 3.708 (5) 136
C17—H17⋯Br1iii 0.93 2.94 3.710 (6) 141
C18—H18⋯Br2iv 0.93 2.93 3.624 (7) 133
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97

Supporting information


Comment top

In the course of our studies aimed at the synthesis of new cadmium(II) 2-bromobenzoato complexes, the title compound was obtained accidentally, 2-bromobenzoic acid acting as a source for bromide anions. Hereafter, the crystal structure of the unexpected product obtained is reported.

The title compound is isostructural with the corresponding manganese(II) complex (Hwang & Ha, 2007). The cadmium(II) metal atom is is six-coordinated by two cis-arranged bromide anions and four N atoms of two bidentate 2,2'-bipyridine ligands in a distorted octahedral geometry (Fig. 1). The bipyridine ligands are not strictly planar the dihedral angle between adjacent pyridine rings being 7.59 (16) and 4.90 (18)°. The dihedral angle formed by the mean planes through the bipyridine ligands is 87.01 (11)°. In the crystal packing, complex molecules are linked into chains parallel to the b axis by ππ stacking interactions, with centroid-to-centroid distances of 3.837 (6) and 3.867 (11) Å (Fig. 2). The chains are further connected by intermolecular C—H···Br hydrogen bonds into a three-dimensional network (Table 1).

Related literature top

For the crystal structure of the isostructural manganese(II) derivative, see: Hwang & Ha (2007).

Experimental top

To a water solution of CdCl2. (0.27 g, 1.47 mmol) was added a 1M solution of Na2CO3.The CdCO3 precipitate was separated by filtration and washed with distilled water. The freshly prepared CdCO3, 2,2'-bipyridine (0.08 g, 0.51 mmol), 2-bromobenzoic acid (0.05 g, 0.24 mmol) in CH3OH/H2O (1:2 v/v; 15 ml) were mixed and stirred for 2 h. The resulting suspension was then heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 5800 minutes. After cooling to room temperature, the solid formed was filtered off. The resulting filtrate was allowed to stand at room temperature, and evaporation for 4 months afforded red single crystals suitable for X-ray analysis.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

In the course of our studies aimed at the synthesis of new cadmium(II) 2-bromobenzoato complexes, the title compound was obtained accidentally, 2-bromobenzoic acid acting as a source for bromide anions. Hereafter, the crystal structure of the unexpected product obtained is reported.

The title compound is isostructural with the corresponding manganese(II) complex (Hwang & Ha, 2007). The cadmium(II) metal atom is is six-coordinated by two cis-arranged bromide anions and four N atoms of two bidentate 2,2'-bipyridine ligands in a distorted octahedral geometry (Fig. 1). The bipyridine ligands are not strictly planar the dihedral angle between adjacent pyridine rings being 7.59 (16) and 4.90 (18)°. The dihedral angle formed by the mean planes through the bipyridine ligands is 87.01 (11)°. In the crystal packing, complex molecules are linked into chains parallel to the b axis by ππ stacking interactions, with centroid-to-centroid distances of 3.837 (6) and 3.867 (11) Å (Fig. 2). The chains are further connected by intermolecular C—H···Br hydrogen bonds into a three-dimensional network (Table 1).

For the crystal structure of the isostructural manganese(II) derivative, see: Hwang & Ha (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing diagram of the title compound showing intermolecular H bonds and ππ stacking interactions as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (A) 2-x, 1-y, 1-z; (B) 1-x, -y, 1-z.
Bis(2,2'-bipyridine-κ2N,N')dibromidocadmium(II) top
Crystal data top
[CdBr2(C10H8N2)2]F(000) = 1128
Mr = 584.59Dx = 1.902 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13300 reflections
a = 8.9105 (18) Åθ = 3.1–27.5°
b = 14.446 (3) ŵ = 5.00 mm1
c = 16.039 (3) ÅT = 290 K
β = 98.66 (3)°Block, red
V = 2041.0 (7) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4632 independent reflections
Radiation source: fine-focus sealed tube3399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1110
Tmin = 0.605, Tmax = 0.611k = 1818
18624 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0714P)2]
where P = (Fo2 + 2Fc2)/3
4632 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[CdBr2(C10H8N2)2]V = 2041.0 (7) Å3
Mr = 584.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9105 (18) ŵ = 5.00 mm1
b = 14.446 (3) ÅT = 290 K
c = 16.039 (3) Å0.10 × 0.10 × 0.10 mm
β = 98.66 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4632 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3399 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.611Rint = 0.050
18624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.14Δρmax = 0.89 e Å3
4632 reflectionsΔρmin = 0.83 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.69224 (3)0.27479 (2)0.53117 (2)0.04035 (14)
N10.8618 (4)0.3596 (3)0.4587 (3)0.0457 (9)
N20.9463 (4)0.2806 (3)0.6104 (3)0.0461 (10)
N30.7832 (5)0.1333 (3)0.4672 (3)0.0516 (10)
N40.6434 (4)0.1378 (3)0.6057 (3)0.0479 (10)
Br10.45650 (6)0.27703 (4)0.40944 (4)0.0621 (2)
Br20.60886 (6)0.39268 (5)0.64099 (4)0.0712 (2)
C10.8134 (6)0.4015 (4)0.3861 (4)0.0573 (14)
H10.71020.39940.36530.069*
C20.9077 (6)0.4480 (4)0.3397 (4)0.0637 (15)
H20.86980.47610.28870.076*
C31.0589 (7)0.4515 (4)0.3713 (4)0.0669 (16)
H31.12580.48250.34180.080*
C41.1125 (6)0.4090 (4)0.4471 (4)0.0548 (13)
H41.21530.41100.46880.066*
C51.0102 (5)0.3630 (3)0.4904 (3)0.0430 (11)
C61.0568 (5)0.3196 (3)0.5738 (3)0.0426 (11)
C71.2045 (5)0.3221 (4)0.6161 (4)0.0611 (15)
H71.28140.34690.58970.073*
C81.2375 (6)0.2884 (4)0.6963 (4)0.0682 (18)
H81.33640.29050.72470.082*
C91.1227 (6)0.2511 (4)0.7349 (4)0.0624 (15)
H91.14150.22950.79010.075*
C100.9787 (6)0.2470 (5)0.6885 (4)0.0574 (14)
H100.90130.21970.71280.069*
C110.8526 (6)0.1343 (5)0.3996 (4)0.0669 (16)
H110.87330.19120.37650.080*
C120.8956 (7)0.0543 (6)0.3618 (4)0.082 (2)
H120.94460.05750.31460.098*
C130.8648 (8)0.0290 (6)0.3951 (5)0.086 (2)
H130.89230.08380.37100.103*
C140.7932 (6)0.0306 (5)0.4638 (4)0.0657 (16)
H140.77130.08700.48720.079*
C150.7520 (5)0.0523 (4)0.5001 (3)0.0478 (12)
C160.6702 (5)0.0545 (4)0.5747 (3)0.0475 (12)
C170.6210 (6)0.0250 (4)0.6101 (4)0.0662 (16)
H170.64050.08290.58860.079*
C180.5426 (7)0.0178 (5)0.6777 (4)0.0719 (18)
H180.50760.07110.70110.086*
C190.5158 (6)0.0670 (5)0.7108 (4)0.0620 (15)
H190.46400.07330.75660.074*
C200.5694 (6)0.1418 (4)0.6725 (3)0.0569 (14)
H200.55340.20000.69430.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0351 (2)0.0449 (3)0.0407 (2)0.00392 (12)0.00467 (14)0.00158 (14)
N10.0384 (18)0.051 (3)0.047 (2)0.0046 (17)0.0033 (16)0.003 (2)
N20.038 (2)0.054 (3)0.044 (2)0.0011 (17)0.0001 (17)0.0011 (19)
N30.055 (2)0.051 (3)0.048 (3)0.0066 (19)0.0068 (18)0.005 (2)
N40.047 (2)0.050 (3)0.045 (2)0.0040 (18)0.0053 (17)0.002 (2)
Br10.0497 (3)0.0604 (4)0.0685 (4)0.0015 (2)0.0160 (3)0.0041 (3)
Br20.0621 (4)0.0684 (4)0.0902 (5)0.0174 (3)0.0342 (3)0.0351 (3)
C10.053 (3)0.065 (4)0.052 (3)0.009 (3)0.003 (2)0.011 (3)
C20.072 (4)0.066 (4)0.053 (3)0.011 (3)0.010 (3)0.013 (3)
C30.071 (4)0.065 (4)0.070 (4)0.021 (3)0.027 (3)0.000 (3)
C40.045 (3)0.060 (4)0.061 (4)0.008 (2)0.015 (2)0.002 (3)
C50.037 (2)0.045 (3)0.047 (3)0.0046 (19)0.0102 (19)0.006 (2)
C60.034 (2)0.045 (3)0.049 (3)0.0020 (19)0.0075 (18)0.007 (2)
C70.037 (2)0.074 (4)0.070 (4)0.001 (2)0.001 (2)0.000 (3)
C80.045 (3)0.076 (5)0.075 (4)0.005 (3)0.017 (3)0.009 (3)
C90.061 (3)0.065 (4)0.055 (4)0.005 (3)0.013 (3)0.001 (3)
C100.050 (3)0.076 (4)0.046 (3)0.001 (3)0.005 (2)0.003 (3)
C110.079 (4)0.074 (4)0.052 (4)0.007 (3)0.026 (3)0.006 (3)
C120.077 (4)0.106 (6)0.065 (4)0.018 (4)0.022 (3)0.030 (4)
C130.085 (4)0.074 (5)0.094 (6)0.018 (4)0.001 (4)0.037 (4)
C140.073 (4)0.049 (4)0.072 (4)0.010 (3)0.001 (3)0.019 (3)
C150.041 (2)0.047 (3)0.050 (3)0.002 (2)0.007 (2)0.006 (2)
C160.050 (3)0.039 (3)0.048 (3)0.002 (2)0.008 (2)0.001 (2)
C170.073 (4)0.045 (4)0.074 (4)0.010 (3)0.009 (3)0.010 (3)
C180.070 (4)0.077 (5)0.065 (4)0.018 (3)0.001 (3)0.023 (4)
C190.063 (3)0.073 (4)0.050 (3)0.017 (3)0.008 (2)0.008 (3)
C200.056 (3)0.065 (4)0.051 (3)0.012 (3)0.013 (2)0.000 (3)
Geometric parameters (Å, º) top
Cd1—N12.380 (4)C7—C81.365 (9)
Cd1—N42.385 (4)C7—H70.9300
Cd1—N22.425 (4)C8—C91.382 (9)
Cd1—N32.478 (4)C8—H80.9300
Cd1—Br22.6360 (8)C9—C101.384 (7)
Cd1—Br12.6440 (11)C9—H90.9300
N1—C11.326 (7)C10—H100.9300
N1—C51.345 (6)C11—C121.386 (9)
N2—C101.334 (7)C11—H110.9300
N2—C61.343 (6)C12—C131.362 (11)
N3—C111.328 (6)C12—H120.9300
N3—C151.329 (7)C13—C141.355 (9)
N4—C161.337 (7)C13—H130.9300
N4—C201.341 (7)C14—C151.404 (7)
C1—C21.378 (8)C14—H140.9300
C1—H10.9300C15—C161.492 (8)
C2—C31.367 (8)C16—C171.383 (8)
C2—H20.9300C17—C181.379 (9)
C3—C41.381 (8)C17—H170.9300
C3—H30.9300C18—C191.371 (9)
C4—C51.395 (7)C18—H180.9300
C4—H40.9300C19—C201.363 (8)
C5—C61.478 (7)C19—H190.9300
C6—C71.388 (6)C20—H200.9300
N1—Cd1—N4148.10 (14)C7—C6—C5123.2 (4)
N1—Cd1—N268.09 (14)C8—C7—C6120.4 (5)
N4—Cd1—N289.58 (14)C8—C7—H7119.8
N1—Cd1—N387.20 (15)C6—C7—H7119.8
N4—Cd1—N367.59 (15)C7—C8—C9119.5 (5)
N2—Cd1—N384.70 (14)C7—C8—H8120.3
N1—Cd1—Br2104.92 (11)C9—C8—H8120.3
N4—Cd1—Br296.31 (10)C8—C9—C10117.7 (6)
N2—Cd1—Br287.84 (10)C8—C9—H9121.2
N3—Cd1—Br2162.24 (11)C10—C9—H9121.2
N1—Cd1—Br197.18 (9)N2—C10—C9122.8 (5)
N4—Cd1—Br1101.28 (9)N2—C10—H10118.6
N2—Cd1—Br1164.09 (11)C9—C10—H10118.6
N3—Cd1—Br188.71 (10)N3—C11—C12122.8 (7)
Br2—Cd1—Br1102.30 (3)N3—C11—H11118.6
C1—N1—C5119.1 (4)C12—C11—H11118.6
C1—N1—Cd1121.2 (3)C13—C12—C11118.7 (6)
C5—N1—Cd1119.6 (3)C13—C12—H12120.7
C10—N2—C6119.6 (4)C11—C12—H12120.7
C10—N2—Cd1122.2 (3)C14—C13—C12118.8 (6)
C6—N2—Cd1118.3 (3)C14—C13—H13120.6
C11—N3—C15119.0 (5)C12—C13—H13120.6
C11—N3—Cd1123.4 (4)C13—C14—C15120.5 (7)
C15—N3—Cd1117.4 (3)C13—C14—H14119.8
C16—N4—C20118.2 (5)C15—C14—H14119.8
C16—N4—Cd1120.2 (3)N3—C15—C14120.2 (5)
C20—N4—Cd1120.9 (4)N3—C15—C16117.1 (4)
N1—C1—C2123.5 (5)C14—C15—C16122.7 (5)
N1—C1—H1118.2N4—C16—C17120.6 (6)
C2—C1—H1118.2N4—C16—C15117.0 (5)
C3—C2—C1117.7 (6)C17—C16—C15122.4 (5)
C3—C2—H2121.1C18—C17—C16119.3 (6)
C1—C2—H2121.1C18—C17—H17120.3
C2—C3—C4120.1 (5)C16—C17—H17120.3
C2—C3—H3120.0C19—C18—C17120.7 (6)
C4—C3—H3120.0C19—C18—H18119.7
C3—C4—C5119.0 (5)C17—C18—H18119.7
C3—C4—H4120.5C20—C19—C18116.2 (6)
C5—C4—H4120.5C20—C19—H19121.9
N1—C5—C4120.5 (5)C18—C19—H19121.9
N1—C5—C6116.9 (4)N4—C20—C19125.0 (6)
C4—C5—C6122.5 (4)N4—C20—H20117.5
N2—C6—C7120.0 (5)C19—C20—H20117.5
N2—C6—C5116.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br2i0.932.953.748 (8)144
C7—H7···Br2ii0.932.983.708 (5)136
C17—H17···Br1iii0.932.943.710 (6)141
C18—H18···Br2iv0.932.933.624 (7)133
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CdBr2(C10H8N2)2]
Mr584.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)8.9105 (18), 14.446 (3), 16.039 (3)
β (°) 98.66 (3)
V3)2041.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.00
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.605, 0.611
No. of measured, independent and
observed [I > 2σ(I)] reflections
18624, 4632, 3399
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.136, 1.14
No. of reflections4632
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.83

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br2i0.9302.9503.748 (8)144
C7—H7···Br2ii0.9302.9803.708 (5)136
C17—H17···Br1iii0.9302.9403.710 (6)141
C18—H18···Br2iv0.9302.9303.624 (7)133
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

The author gratefully acknowledges the financial support of the Education Office of Zhejiang province (grant No. 20051316).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHwang, I.-C. & Ha, K. (2007). Z. Kristallogr. New Cryst. Struct. 222, 209–210.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds