metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­[μ3-N′-(carb­oxy­meth­yl)ethyl­ene­di­amine-N,N,N′-tri­acetato]samarium(III)]

aDepartment of Chemistry and Biology Engineering, Hezhou University, Hezhou, Guangxi Zhuang Autonomous Region 542800, People's Republic of China
*Correspondence e-mail: gyzhou@yahoo.cn

(Received 31 August 2008; accepted 25 September 2008; online 30 September 2008)

In the title coordination polymer, [Sm(C10H13N2O8)(H2O)]n, each samarium(III) centre is nine-coordinated by six O and two N atoms from three N′-(carboxy­meth­yl)ethyl­enediamine-N,N,N′-triacetate ligands and one O atom of a water mol­ecule, forming polymeric chains running parallel to the a axis. The packing is governed by inter­molecular O—H⋯O hydrogen-bonding inter­actions.

Related literature

For the corresponding neodymium polymeric complex, see: Huang et al. (2008[Huang, X.-H., Xu, X.-H., Pan, W.-B. & Zeng, R.-H. (2008). Acta Cryst. E64, m1194.]). For related literature, see: Dakanali et al. (2003[Dakanali, M., Kefalas, E. T., Raptopoulou, C. P., Terzis, A., Mavromoustakos, T. & Salifoglou, A. (2003). Inorg. Chem. 42, 2531-2537.]); Kitaura et al. (2002[Kitaura, R., Fujimoto, K., Noro, S., Kondo, M. & Kitagawa, S. (2002). Angew. Chem. Int. Ed. 41, 133-135.]); Rowsell et al. (2004[Rowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc. 126, 5666-5667.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm(C10H13N2O8)(H2O)]

  • Mr = 457.60

  • Orthorhombic, P b c a

  • a = 6.6506 (7) Å

  • b = 14.7051 (16) Å

  • c = 25.967 (3) Å

  • V = 2539.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.68 mm−1

  • T = 296 (2) K

  • 0.23 × 0.19 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.355, Tmax = 0.433

  • 13066 measured reflections

  • 2637 independent reflections

  • 2289 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.03

  • 2637 reflections

  • 206 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 1.66 2.474 (4) 170
O1W—H1W⋯O6ii 0.820 (10) 2.02 (2) 2.771 (4) 152.8 (18)
O1W—H2W⋯O8iii 0.823 (10) 2.10 (2) 2.928 (4) 177.1 (15)
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+2, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Research on metal–organic frameworks has been expanding rapidly, due to their interesting structural motifs (Dakanali et al., 2003) and other potential applications (Kitaura et al., 2002; Rowsell et al., 2004) in molecular-based materials. Ethylenediaminetetraacetic acid (H4edta) is a good example of a bridging ligand that can link metal centres into extended networks. Herein, we report a new samarium complex obtained by the hydrothermal treatment of Sm2O3 and H4edta in the presence of HClO4.

The samarium(III) metal centre is nine-coordinated by six oxygen and two nitrogen atoms from three different N'-(carboxymethyl)ethylenediamine-N,N,N'-triacetato ligands and one water molecule (Fig. 1) to form a polymeric chain running parallel to the crystallographic a axis (Fig. 2). The Sm···Sm separations between adjacent metal centres are 4.2461 (6) and 6.6506 (8) Å. The polymeric chains self-assemble via intermolecular O—H···O hydrogen bonding interactions (Table 1) to form a three-dimensional supramolecular network. The title compound is isostructural with the corresponding neodymium polymeric complex (Huang et al., 2008).

Related literature top

For the corresponding neodymium polymeric complex, see: Huang et al. (2008). For related literature, see: Dakanali et al. (2003); Kitaura et al. (2002); Rowsell et al. (2004).

Experimental top

A mixture of Sm2O3 (0.5 mmol), ethylenediaminetetraacetic acid (H4edta) (0.5 mmol), HClO4 (0.2 mmol) and H2O (10 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O—H = 0.82 Å and H···H = 1.20 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.97 Å and O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids. Symmetry codes: (i: 1+x, y, z; ii: 2-x, 1-y, 1-z).
[Figure 2] Fig. 2. The one-dimensional polymeric chain of the title compound.
Poly[aqua[µ3-N'-(carboxymethyl)ethylenediamine-N,N,N'-triacetato] samarium(III)] top
Crystal data top
[Sm(C10H13N2O8)(H2O)]F(000) = 1784
Mr = 457.60Dx = 2.394 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3600 reflections
a = 6.6506 (7) Åθ = 1.7–28.0°
b = 14.7051 (16) ŵ = 4.68 mm1
c = 25.967 (3) ÅT = 296 K
V = 2539.5 (5) Å3Block, colourless
Z = 80.23 × 0.19 × 0.18 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2637 independent reflections
Radiation source: fine-focus sealed tube2289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scanθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 85
Tmin = 0.355, Tmax = 0.433k = 1618
13066 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0288P)2 + 6.2721P]
where P = (Fo2 + 2Fc2)/3
2637 reflections(Δ/σ)max = 0.002
206 parametersΔρmax = 0.94 e Å3
3 restraintsΔρmin = 1.21 e Å3
Crystal data top
[Sm(C10H13N2O8)(H2O)]V = 2539.5 (5) Å3
Mr = 457.60Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.6506 (7) ŵ = 4.68 mm1
b = 14.7051 (16) ÅT = 296 K
c = 25.967 (3) Å0.23 × 0.19 × 0.18 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2637 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2289 reflections with I > 2σ(I)
Tmin = 0.355, Tmax = 0.433Rint = 0.035
13066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0283 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.94 e Å3
2637 reflectionsΔρmin = 1.21 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm11.07590 (3)0.506856 (12)0.420681 (7)0.01387 (8)
C11.2133 (6)0.3523 (3)0.33453 (14)0.0168 (8)
C21.0904 (6)0.2870 (3)0.36651 (15)0.0186 (8)
H2A1.01700.24670.34370.022*
H2B1.18070.25000.38700.022*
C30.7461 (6)0.3440 (3)0.37554 (15)0.0197 (8)
H3A0.65430.37390.39910.024*
H3B0.69180.28430.36780.024*
C40.7586 (6)0.3985 (3)0.32648 (14)0.0193 (8)
H4A0.85800.37130.30390.023*
H4B0.62970.39650.30900.023*
C50.9165 (6)0.5334 (3)0.29164 (15)0.0186 (8)
H5A0.81890.54860.26520.022*
H5B1.00970.48930.27740.022*
C61.0293 (6)0.6179 (3)0.30788 (15)0.0178 (8)
C70.6310 (6)0.5491 (3)0.34790 (15)0.0199 (9)
H7A0.51630.52050.33150.024*
H7B0.64670.60910.33290.024*
C80.5880 (6)0.5592 (3)0.40475 (15)0.0166 (8)
C90.9173 (6)0.2796 (3)0.44879 (15)0.0194 (9)
H9A1.02770.23690.45220.023*
H9B0.79420.24470.44580.023*
C100.9064 (6)0.3372 (3)0.49695 (15)0.0173 (8)
N10.9459 (5)0.3332 (2)0.40114 (12)0.0164 (7)
N20.8138 (5)0.4946 (2)0.33643 (12)0.0173 (7)
O11.2293 (4)0.43367 (18)0.34962 (10)0.0207 (6)
O21.2980 (5)0.32419 (18)0.29435 (10)0.0235 (7)
O31.0724 (4)0.63138 (19)0.35307 (11)0.0232 (7)
O41.0758 (5)0.6717 (2)0.27029 (11)0.0292 (7)
H41.11820.71990.28190.044*
O50.9074 (4)0.42346 (18)0.49227 (10)0.0203 (6)
O60.7369 (4)0.5605 (2)0.43483 (10)0.0233 (6)
O70.4107 (4)0.57144 (19)0.41872 (11)0.0211 (6)
O80.9000 (5)0.2985 (2)0.53938 (11)0.0294 (7)
O1W1.3250 (5)0.3977 (2)0.46232 (11)0.0271 (7)
H2W1.350 (8)0.3428 (10)0.4613 (15)0.041*
H1W1.348 (8)0.412 (3)0.4922 (7)0.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01036 (12)0.01782 (12)0.01343 (12)0.00028 (8)0.00067 (7)0.00100 (8)
C10.0145 (19)0.021 (2)0.0153 (18)0.0028 (16)0.0001 (15)0.0005 (15)
C20.019 (2)0.0179 (19)0.019 (2)0.0032 (17)0.0014 (16)0.0000 (16)
C30.016 (2)0.0196 (19)0.023 (2)0.0039 (17)0.0008 (18)0.0007 (16)
C40.017 (2)0.022 (2)0.0197 (19)0.0027 (16)0.0040 (17)0.0026 (15)
C50.019 (2)0.022 (2)0.0152 (19)0.0017 (17)0.0002 (16)0.0008 (16)
C60.0142 (19)0.018 (2)0.021 (2)0.0000 (16)0.0007 (16)0.0010 (16)
C70.016 (2)0.026 (2)0.018 (2)0.0035 (17)0.0008 (16)0.0034 (17)
C80.014 (2)0.0157 (18)0.020 (2)0.0015 (15)0.0019 (16)0.0007 (15)
C90.025 (2)0.017 (2)0.016 (2)0.0001 (17)0.0005 (17)0.0022 (15)
C100.0102 (19)0.024 (2)0.0176 (19)0.0010 (16)0.0031 (15)0.0005 (16)
N10.0181 (18)0.0169 (16)0.0143 (16)0.0004 (14)0.0019 (13)0.0000 (13)
N20.0138 (16)0.0193 (17)0.0187 (16)0.0011 (14)0.0008 (13)0.0005 (14)
O10.0174 (15)0.0206 (14)0.0242 (14)0.0011 (12)0.0052 (12)0.0055 (12)
O20.0319 (18)0.0201 (14)0.0186 (14)0.0006 (13)0.0078 (12)0.0020 (12)
O30.0277 (17)0.0257 (16)0.0163 (14)0.0039 (13)0.0037 (12)0.0008 (12)
O40.046 (2)0.0227 (16)0.0190 (15)0.0149 (15)0.0017 (14)0.0007 (12)
O50.0218 (16)0.0184 (14)0.0209 (15)0.0051 (12)0.0034 (12)0.0039 (11)
O60.0133 (14)0.0355 (17)0.0211 (14)0.0051 (13)0.0039 (12)0.0038 (12)
O70.0115 (14)0.0224 (15)0.0295 (16)0.0004 (11)0.0016 (12)0.0047 (12)
O80.0337 (19)0.0355 (18)0.0189 (15)0.0007 (15)0.0027 (13)0.0061 (13)
O1W0.0303 (18)0.0290 (17)0.0221 (16)0.0045 (15)0.0043 (14)0.0029 (13)
Geometric parameters (Å, º) top
Sm1—O12.367 (3)C5—C61.512 (5)
Sm1—O62.416 (3)C5—H5A0.9700
Sm1—O7i2.421 (3)C5—H5B0.9700
Sm1—O5ii2.484 (3)C6—O31.224 (5)
Sm1—O52.493 (3)C6—O41.294 (5)
Sm1—O32.537 (3)C7—N21.486 (5)
Sm1—O1W2.548 (3)C7—C81.511 (5)
Sm1—N12.744 (3)C7—H7A0.9700
Sm1—N22.803 (3)C7—H7B0.9700
C1—O21.256 (4)C8—O71.247 (5)
C1—O11.263 (5)C8—O61.261 (5)
C1—C21.510 (5)C9—N11.479 (5)
C2—N11.481 (5)C9—C101.512 (5)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C3—N11.494 (5)C10—O81.241 (5)
C3—C41.507 (5)C10—O51.274 (5)
C3—H3A0.9700O4—H40.8200
C3—H3B0.9700O5—Sm1ii2.484 (3)
C4—N21.483 (5)O7—Sm1iii2.421 (3)
C4—H4A0.9700O1W—H2W0.823 (10)
C4—H4B0.9700O1W—H1W0.820 (10)
C5—N21.464 (5)
O1—Sm1—O6131.98 (9)N2—C4—H4B109.2
O1—Sm1—O7i76.45 (9)C3—C4—H4B109.2
O6—Sm1—O7i137.16 (10)H4A—C4—H4B107.9
O1—Sm1—O5ii151.34 (10)N2—C5—C6109.3 (3)
O6—Sm1—O5ii76.64 (9)N2—C5—H5A109.8
O7i—Sm1—O5ii79.40 (9)C6—C5—H5A109.8
O1—Sm1—O5123.46 (9)N2—C5—H5B109.8
O6—Sm1—O568.14 (9)C6—C5—H5B109.8
O7i—Sm1—O5128.46 (9)H5A—C5—H5B108.3
O5ii—Sm1—O562.91 (10)O3—C6—O4124.6 (4)
O1—Sm1—O378.03 (9)O3—C6—C5121.1 (4)
O6—Sm1—O382.03 (9)O4—C6—C5114.2 (3)
O7i—Sm1—O373.18 (9)N2—C7—C8113.8 (3)
O5ii—Sm1—O3109.41 (9)N2—C7—H7A108.8
O5—Sm1—O3150.11 (9)C8—C7—H7A108.8
O1—Sm1—O1W76.36 (9)N2—C7—H7B108.8
O6—Sm1—O1W138.39 (10)C8—C7—H7B108.8
O7i—Sm1—O1W70.02 (10)H7A—C7—H7B107.7
O5ii—Sm1—O1W81.07 (10)O7—C8—O6124.1 (4)
O5—Sm1—O1W70.48 (10)O7—C8—C7118.5 (3)
O3—Sm1—O1W138.98 (10)O6—C8—C7117.2 (3)
O1—Sm1—N164.43 (9)N1—C9—C10113.6 (3)
O6—Sm1—N192.16 (10)N1—C9—H9A108.9
O7i—Sm1—N1130.62 (9)C10—C9—H9A108.9
O5ii—Sm1—N1124.49 (9)N1—C9—H9B108.9
O5—Sm1—N162.50 (9)C10—C9—H9B108.9
O3—Sm1—N1122.76 (9)H9A—C9—H9B107.7
O1W—Sm1—N172.34 (10)O8—C10—O5122.8 (4)
O1—Sm1—N268.30 (10)O8—C10—C9118.6 (4)
O6—Sm1—N263.86 (9)O5—C10—C9118.6 (3)
O7i—Sm1—N2125.50 (9)C9—N1—C2110.3 (3)
O5ii—Sm1—N2139.87 (9)C9—N1—C3108.3 (3)
O5—Sm1—N2105.71 (9)C2—N1—C3110.8 (3)
O3—Sm1—N260.04 (9)C9—N1—Sm1112.4 (2)
O1W—Sm1—N2134.02 (10)C2—N1—Sm1109.5 (2)
N1—Sm1—N266.42 (9)C3—N1—Sm1105.3 (2)
O2—C1—O1122.1 (4)C5—N2—C4110.4 (3)
O2—C1—C2119.3 (3)C5—N2—C7109.3 (3)
O1—C1—C2118.5 (3)C4—N2—C7110.2 (3)
N1—C2—C1113.2 (3)C5—N2—Sm1107.8 (2)
N1—C2—H2A108.9C4—N2—Sm1110.6 (2)
C1—C2—H2A108.9C7—N2—Sm1108.5 (2)
N1—C2—H2B108.9C1—O1—Sm1129.5 (2)
C1—C2—H2B108.9C6—O3—Sm1123.3 (3)
H2A—C2—H2B107.8C6—O4—H4109.5
N1—C3—C4112.6 (3)C10—O5—Sm1ii108.9 (2)
N1—C3—H3A109.1C10—O5—Sm1124.3 (2)
C4—C3—H3A109.1Sm1ii—O5—Sm1117.09 (10)
N1—C3—H3B109.1C8—O6—Sm1129.3 (2)
C4—C3—H3B109.1C8—O7—Sm1iii145.0 (3)
H3A—C3—H3B107.8Sm1—O1W—H2W137 (3)
N2—C4—C3111.9 (3)Sm1—O1W—H1W111 (3)
N2—C4—H4A109.2H2W—O1W—H1W104 (4)
C3—C4—H4A109.2
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2iv0.821.662.474 (4)170
O1W—H1W···O6ii0.82 (1)2.02 (2)2.771 (4)153 (2)
O1W—H2W···O8v0.82 (1)2.10 (2)2.928 (4)177 (2)
Symmetry codes: (ii) x+2, y+1, z+1; (iv) x+5/2, y+1/2, z; (v) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Sm(C10H13N2O8)(H2O)]
Mr457.60
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)6.6506 (7), 14.7051 (16), 25.967 (3)
V3)2539.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)4.68
Crystal size (mm)0.23 × 0.19 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.355, 0.433
No. of measured, independent and
observed [I > 2σ(I)] reflections
13066, 2637, 2289
Rint0.035
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.03
No. of reflections2637
No. of parameters206
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.94, 1.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.821.662.474 (4)169.5
O1W—H1W···O6ii0.820 (10)2.02 (2)2.771 (4)152.8 (18)
O1W—H2W···O8iii0.823 (10)2.10 (2)2.928 (4)177.1 (15)
Symmetry codes: (i) x+5/2, y+1/2, z; (ii) x+2, y+1, z+1; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge Hezhou University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDakanali, M., Kefalas, E. T., Raptopoulou, C. P., Terzis, A., Mavromoustakos, T. & Salifoglou, A. (2003). Inorg. Chem. 42, 2531–2537.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, X.-H., Xu, X.-H., Pan, W.-B. & Zeng, R.-H. (2008). Acta Cryst. E64, m1194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitaura, R., Fujimoto, K., Noro, S., Kondo, M. & Kitagawa, S. (2002). Angew. Chem. Int. Ed. 41, 133–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationRowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc. 126, 5666–5667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds