organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Nitro­phenyl­sulfon­yl)-N-(4-nitro­phenyl­sulfon­yl)methyl­amine

aThe Graduate School of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
*Correspondence e-mail: haiyan_lu2008@yahoo.cn

(Received 22 July 2008; accepted 27 August 2008; online 6 September 2008)

In the crystal structure of the title compound, C13H11N3O8S2, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds into zigzag chains running parallel to the c axis. Centrosymmetrically related chains are further stabilized by aromatic ππ stacking inter­actions [centroid–centroid distance = 3.749 (3) Å] involving adjacent 4-nitro­benzene rings. Intra­molecular C—H⋯O hydrogen bonds are also present.

Related literature

For the crystal structures of related compounds, see: Henschel et al. (1996[Henschel, D., Hiemisch, O., Blaschette, A. & Jones, P. G. (1996). Z. Naturforsch. Teil B, 51, 1313-1315.]); Curtis & Pavkovic (1983[Curtis, V. A. & Pavkovic, S. F. (1983). Acta Cryst. C39, 1077-1078.]). For details of the biological activities of sulfonamide compounds, see: Kamoshita et al. (1987[Kamoshita, K., Matsumoto, H. & Nagano, E. (1987). US Patent. US 4 670 046.]). For details of the application of sulfonimade catalysts, see: Zhang et al. (2007[Zhang, Z. B., Zhou, S. Y. & Nie, J. (2007). J. Mol. Catal. A Chem. 265, 9-14.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O8S2

  • Mr = 401.37

  • Monoclinic, P 21 /c

  • a = 13.517 (3) Å

  • b = 9.994 (2) Å

  • c = 11.990 (2) Å

  • β = 95.26 (3)°

  • V = 1613.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 153 (2) K

  • 0.58 × 0.47 × 0.29 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.750, Tmax = 0.897

  • 15376 measured reflections

  • 3683 independent reflections

  • 3540 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.094

  • S = 1.13

  • 3683 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O7 0.95 2.53 2.902 (2) 104
C4—H4A⋯O5 0.95 2.38 2.803 (2) 106
C13—H13A⋯O7 0.98 2.54 2.978 (2) 107
C13—H13C⋯O1 0.98 2.34 2.972 (2) 122
C1—H1A⋯O6i 0.95 2.51 3.369 (2) 150
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecules containing the sulfonimide group have been recently of interest for their applications as herbicides (Kamoshita et al., 1987) and catalysts (Zhang et al., 2007). In the present paper, the crystal structure of a new compound containing two sulfonimide groups is reported.

In the molecule of the title compound (Fig. 1) all bond lengths are normal (Allen et al., 1987) and in a good agreement with those reported previously for similar compounds (Henschel et al., 1996; Curtis & Pavkovic, 1983). The molecular conformation is stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal structure, molecules are linked by intermolecular C—H···O hydrogen bonding interactions (Fig. 2) forming zigzag chains running parallel to the c axis. Centrosymmetrically related chains are further stabilized by aromatic π-π stacking interactions occurring between adjacent the 4-nitrobenzene rings with a centroid-centroid distance of 3.749 (3) Å.

Related literature top

For the crystal structures of related compounds, see: Henschel et al. (1996); Curtis & Pavkovic (1983). For details of the biological activities of sulfonimide compounds, see: Kamoshita et al. (1987). For details of the application of sulfonimides catalysts, see: Zhang et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of 4-nitro-benzene-1-sulfonyl chloride (10 mmol, 2.21 g) in anhydrous CH2Cl2 (10 mL) was dropwise added over a period of 10 min to a solution of 2-nitro-N-methyl-benzenesulfonamide (10 mmol, 2.16 g) and EtN(i-Pr)2 (3 mmol) in CH2Cl2 (10 mL) at 273K. The mixture was stirred at room temperature for 4 h. The organic phase was washed with 2N HCl twice and dried over anhydrous Na2SO4. The solvent was removed and the residue was purified by flash chromatography (2:1 cyclohexane/dichloromethane) to give the title compound as a white solid (2.81 mg, 70% yield). Single crystals suitable for X-ray measurements were obtained by slow evaporation of an ethanol/dichloromethane solution (1:1 v/v) at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 or 0.98 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis, showing the chains of molecules formed by intermolecular hydrogen bonds (dashed lines).
N-(2-Nitrophenylsulfonyl)-N-(4-nitrophenylsulfonyl)methylamine top
Crystal data top
C13H11N3O8S2F(000) = 824
Mr = 401.37Dx = 1.653 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10014 reflections
a = 13.517 (3) Åθ = 6.2–55.0°
b = 9.994 (2) ŵ = 0.38 mm1
c = 11.990 (2) ÅT = 153 K
β = 95.26 (3)°Block, colourless
V = 1613.0 (6) Å30.58 × 0.47 × 0.29 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3683 independent reflections
Radiation source: Rotating Anode3540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω oscillation scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
h = 1717
Tmin = 0.750, Tmax = 0.897k = 1212
15376 measured reflectionsl = 1513
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.7411P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3683 reflectionsΔρmax = 0.49 e Å3
236 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2001), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0231 (18)
Crystal data top
C13H11N3O8S2V = 1613.0 (6) Å3
Mr = 401.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.517 (3) ŵ = 0.38 mm1
b = 9.994 (2) ÅT = 153 K
c = 11.990 (2) Å0.58 × 0.47 × 0.29 mm
β = 95.26 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3683 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
3540 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.897Rint = 0.017
15376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.13Δρmax = 0.49 e Å3
3683 reflectionsΔρmin = 0.41 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15312 (2)0.15728 (3)0.41897 (3)0.01644 (11)
S20.35222 (2)0.06267 (3)0.48921 (3)0.01728 (11)
O80.20741 (8)0.19778 (11)0.32804 (8)0.0220 (2)
O70.06390 (8)0.08053 (11)0.39952 (9)0.0241 (2)
O30.13493 (10)0.70583 (13)0.72576 (12)0.0399 (3)
O60.39404 (8)0.02832 (12)0.57283 (9)0.0261 (2)
O50.38943 (8)0.19667 (11)0.48792 (9)0.0255 (2)
O40.01529 (9)0.63329 (11)0.73325 (9)0.0271 (2)
N30.23085 (9)0.06608 (12)0.50391 (10)0.0187 (2)
C70.12748 (10)0.29709 (13)0.50127 (11)0.0161 (3)
O20.34613 (11)0.36035 (12)0.39097 (13)0.0401 (3)
C80.04276 (10)0.29488 (13)0.55885 (11)0.0173 (3)
H8B0.00110.22050.55230.021*
N10.31903 (10)0.24388 (12)0.39825 (11)0.0241 (3)
C60.36282 (10)0.14363 (14)0.32761 (12)0.0199 (3)
C110.17430 (11)0.51236 (14)0.57559 (13)0.0215 (3)
H11A0.21800.58700.58260.026*
C120.19373 (10)0.40442 (15)0.50825 (12)0.0209 (3)
H12A0.25090.40360.46770.025*
C40.40219 (10)0.08068 (15)0.27685 (13)0.0218 (3)
H4A0.40430.17390.29220.026*
C100.08951 (10)0.50856 (13)0.63249 (11)0.0177 (3)
C50.36741 (10)0.00693 (14)0.35469 (11)0.0174 (3)
O10.25661 (11)0.20743 (12)0.45856 (12)0.0375 (3)
C90.02324 (10)0.40325 (14)0.62611 (11)0.0181 (3)
H9A0.03400.40480.66650.022*
C30.43385 (11)0.03367 (18)0.17699 (13)0.0269 (3)
H3A0.45610.09490.12410.032*
N20.06833 (10)0.62403 (12)0.70259 (10)0.0227 (3)
C20.43303 (12)0.10224 (18)0.15451 (13)0.0286 (3)
H2A0.45780.13450.08790.034*
C130.19287 (12)0.00944 (17)0.60575 (13)0.0268 (3)
H13A0.12050.01960.60110.040*
H13B0.22290.05690.67190.040*
H13C0.21000.08570.61170.040*
C10.39611 (11)0.19141 (16)0.22913 (13)0.0258 (3)
H1A0.39370.28440.21290.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01570 (18)0.01769 (18)0.01585 (18)0.00236 (11)0.00106 (12)0.00261 (11)
S20.01591 (17)0.01766 (18)0.01801 (18)0.00156 (11)0.00017 (12)0.00121 (11)
O80.0226 (5)0.0266 (5)0.0172 (5)0.0065 (4)0.0044 (4)0.0012 (4)
O70.0198 (5)0.0260 (5)0.0260 (5)0.0025 (4)0.0002 (4)0.0080 (4)
O30.0363 (7)0.0304 (6)0.0522 (8)0.0013 (5)0.0003 (6)0.0206 (6)
O60.0242 (5)0.0314 (6)0.0221 (5)0.0076 (4)0.0012 (4)0.0041 (4)
O50.0255 (5)0.0213 (5)0.0295 (6)0.0048 (4)0.0017 (4)0.0063 (4)
O40.0322 (6)0.0265 (5)0.0234 (5)0.0113 (4)0.0059 (4)0.0020 (4)
N30.0179 (5)0.0196 (6)0.0193 (6)0.0046 (4)0.0050 (4)0.0025 (4)
C70.0167 (6)0.0158 (6)0.0156 (6)0.0036 (5)0.0007 (5)0.0003 (5)
O20.0495 (8)0.0169 (5)0.0556 (8)0.0060 (5)0.0141 (6)0.0020 (5)
C80.0185 (6)0.0170 (6)0.0167 (6)0.0008 (5)0.0020 (5)0.0019 (5)
N10.0279 (6)0.0172 (6)0.0270 (6)0.0001 (5)0.0015 (5)0.0007 (5)
C60.0175 (6)0.0200 (7)0.0220 (7)0.0020 (5)0.0012 (5)0.0002 (5)
C110.0195 (6)0.0173 (6)0.0276 (7)0.0006 (5)0.0010 (5)0.0013 (5)
C120.0167 (6)0.0207 (7)0.0260 (7)0.0005 (5)0.0054 (5)0.0011 (5)
C40.0162 (6)0.0240 (7)0.0253 (7)0.0002 (5)0.0032 (5)0.0026 (5)
C100.0215 (6)0.0158 (6)0.0154 (6)0.0060 (5)0.0017 (5)0.0004 (5)
C50.0135 (6)0.0193 (6)0.0193 (6)0.0021 (5)0.0018 (5)0.0010 (5)
O10.0488 (7)0.0227 (6)0.0449 (7)0.0002 (5)0.0257 (6)0.0008 (5)
C90.0200 (6)0.0196 (6)0.0152 (6)0.0038 (5)0.0034 (5)0.0025 (5)
C30.0198 (7)0.0379 (8)0.0233 (7)0.0007 (6)0.0046 (6)0.0046 (6)
N20.0296 (6)0.0184 (6)0.0192 (6)0.0071 (5)0.0021 (5)0.0021 (5)
C20.0227 (7)0.0422 (9)0.0214 (7)0.0056 (6)0.0044 (6)0.0045 (6)
C130.0280 (7)0.0300 (8)0.0237 (7)0.0051 (6)0.0097 (6)0.0079 (6)
C10.0237 (7)0.0272 (7)0.0263 (7)0.0051 (6)0.0005 (6)0.0076 (6)
Geometric parameters (Å, º) top
S1—O81.4275 (11)C6—C51.4044 (19)
S1—O71.4304 (11)C11—C121.387 (2)
S1—N31.6660 (13)C11—C101.387 (2)
S1—C71.7633 (14)C11—H11A0.9500
S2—O61.4310 (11)C12—H12A0.9500
S2—O51.4312 (11)C4—C31.390 (2)
S2—N31.6665 (13)C4—C51.393 (2)
S2—C51.7855 (14)C4—H4A0.9500
O3—N21.2289 (19)C10—C91.380 (2)
O4—N21.2236 (18)C10—N21.4712 (17)
N3—C131.4799 (18)C9—H9A0.9500
C7—C81.3905 (19)C3—C21.385 (2)
C7—C121.3950 (19)C3—H3A0.9500
O2—N11.2258 (17)C2—C11.388 (2)
C8—C91.3901 (19)C2—H2A0.9500
C8—H8B0.9500C13—H13A0.9800
N1—O11.2164 (18)C13—H13B0.9800
N1—C61.4709 (19)C13—H13C0.9800
C6—C11.387 (2)C1—H1A0.9500
O8—S1—O7120.82 (7)C7—C12—H12A120.7
O8—S1—N3106.41 (6)C3—C4—C5120.96 (14)
O7—S1—N3106.34 (7)C3—C4—H4A119.5
O8—S1—C7110.12 (7)C5—C4—H4A119.5
O7—S1—C7108.07 (7)C9—C10—C11123.72 (13)
N3—S1—C7103.69 (6)C9—C10—N2118.08 (13)
O6—S2—O5119.05 (7)C11—C10—N2118.20 (13)
O6—S2—N3105.57 (7)C4—C5—C6117.85 (13)
O5—S2—N3109.41 (6)C4—C5—S2115.74 (11)
O6—S2—C5108.34 (7)C6—C5—S2125.56 (11)
O5—S2—C5106.57 (7)C10—C9—C8118.02 (13)
N3—S2—C5107.42 (7)C10—C9—H9A121.0
C13—N3—S1117.82 (10)C8—C9—H9A121.0
C13—N3—S2119.92 (10)C2—C3—C4120.11 (15)
S1—N3—S2121.22 (7)C2—C3—H3A119.9
C8—C7—C12122.40 (12)C4—C3—H3A119.9
C8—C7—S1118.58 (10)O4—N2—O3124.02 (13)
C12—C7—S1119.00 (10)O4—N2—C10117.68 (12)
C9—C8—C7118.98 (13)O3—N2—C10118.30 (13)
C9—C8—H8B120.5C3—C2—C1120.10 (14)
C7—C8—H8B120.5C3—C2—H2A120.0
O1—N1—O2123.70 (14)C1—C2—H2A120.0
O1—N1—C6118.43 (12)N3—C13—H13A109.5
O2—N1—C6117.85 (13)N3—C13—H13B109.5
C1—C6—C5121.40 (14)H13A—C13—H13B109.5
C1—C6—N1115.78 (13)N3—C13—H13C109.5
C5—C6—N1122.76 (13)H13A—C13—H13C109.5
C12—C11—C10118.30 (13)H13B—C13—H13C109.5
C12—C11—H11A120.8C6—C1—C2119.47 (15)
C10—C11—H11A120.8C6—C1—H1A120.3
C11—C12—C7118.57 (13)C2—C1—H1A120.3
C11—C12—H12A120.7
O8—S1—N3—C13179.35 (11)C12—C11—C10—C90.1 (2)
O7—S1—N3—C1349.34 (12)C12—C11—C10—N2179.14 (12)
C7—S1—N3—C1364.50 (12)C3—C4—C5—C61.7 (2)
O8—S1—N3—S212.32 (10)C3—C4—C5—S2168.34 (11)
O7—S1—N3—S2142.33 (8)C1—C6—C5—C43.0 (2)
C7—S1—N3—S2103.84 (9)N1—C6—C5—C4174.28 (13)
O6—S2—N3—C1313.90 (13)C1—C6—C5—S2165.97 (11)
O5—S2—N3—C13115.35 (12)N1—C6—C5—S216.74 (19)
C5—S2—N3—C13129.34 (12)O6—S2—C5—C4134.24 (11)
O6—S2—N3—S1178.01 (8)O5—S2—C5—C45.02 (12)
O5—S2—N3—S152.74 (10)N3—S2—C5—C4112.16 (11)
C5—S2—N3—S162.56 (10)O6—S2—C5—C634.94 (14)
O8—S1—C7—C8151.35 (11)O5—S2—C5—C6164.17 (12)
O7—S1—C7—C817.44 (13)N3—S2—C5—C678.65 (13)
N3—S1—C7—C895.14 (12)C11—C10—C9—C80.0 (2)
O8—S1—C7—C1230.00 (13)N2—C10—C9—C8179.28 (11)
O7—S1—C7—C12163.91 (11)C7—C8—C9—C100.02 (19)
N3—S1—C7—C1283.51 (12)C5—C4—C3—C21.3 (2)
C12—C7—C8—C90.2 (2)C9—C10—N2—O414.29 (18)
S1—C7—C8—C9178.44 (10)C11—C10—N2—O4164.99 (13)
O1—N1—C6—C1152.05 (15)C9—C10—N2—O3166.50 (14)
O2—N1—C6—C126.4 (2)C11—C10—N2—O314.22 (19)
O1—N1—C6—C525.4 (2)C4—C3—C2—C13.1 (2)
O2—N1—C6—C5156.21 (15)C5—C6—C1—C21.3 (2)
C10—C11—C12—C70.3 (2)N1—C6—C1—C2176.21 (13)
C8—C7—C12—C110.3 (2)C3—C2—C1—C61.8 (2)
S1—C7—C12—C11178.29 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O70.952.532.902 (2)104
C4—H4A···O50.952.382.803 (2)106
C13—H13A···O70.982.542.978 (2)107
C13—H13C···O10.982.342.972 (2)122
C1—H1A···O6i0.952.513.369 (2)150
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H11N3O8S2
Mr401.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)13.517 (3), 9.994 (2), 11.990 (2)
β (°) 95.26 (3)
V3)1613.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.58 × 0.47 × 0.29
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi 1995)
Tmin, Tmax0.750, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
15376, 3683, 3540
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.094, 1.13
No. of reflections3683
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.41

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O70.952.532.902 (2)103.7
C4—H4A···O50.952.382.803 (2)106.3
C13—H13A···O70.982.542.978 (2)106.9
C13—H13C···O10.982.342.972 (2)121.8
C1—H1A···O6i0.952.513.369 (2)149.7
Symmetry code: (i) x, y1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCurtis, V. A. & Pavkovic, S. F. (1983). Acta Cryst. C39, 1077–1078.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHenschel, D., Hiemisch, O., Blaschette, A. & Jones, P. G. (1996). Z. Naturforsch. Teil B, 51, 1313–1315.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKamoshita, K., Matsumoto, H. & Nagano, E. (1987). US Patent. US 4 670 046.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. B., Zhou, S. Y. & Nie, J. (2007). J. Mol. Catal. A Chem. 265, 9–14.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds