metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(5-carb­­oxy-2-methyl-1H-imidazole-4-carboxyl­ato-κ2N3,O4)manganese(II)

aCollege of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, People's Republic of China
*Correspondence e-mail: yingshaoming@hotmail.com

(Received 9 January 2008; accepted 9 February 2008; online 15 February 2008)

The title complex, [Mn(C6H5N2O4)2(H2O)2], was obtained by hydro­thermal synthesis. The MnII atom, which lies on an inversion centre, displays a slightly distorted octa­hedral geometry. In the crystal packing, complex mol­ecules are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds to form a three-dimensional supramolecular structure. The title complex is isostructural with the corresponding cadmium(II) complex [Nie, Wen, Wu, Liu & Liu (2007[Nie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753-m755.]). Acta Cryst. E63, m753–m755].

Related literature

For related literature, see: Liang et al. (2002[Liang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun. 5, 366-368.]); Net et al. (1989[Net, G., Bayon, J. C., Butler, W. M. & Rasmussen, P. (1989). J. Chem. Soc. Chem. Commun. pp. 1022-1023.]); Nie et al. (2007[Nie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753-m755.]); Ying & Mao (2006[Ying, S.-M. & Mao, J.-G. (2006). Cryst. Growth Des. 6, 964-968.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6H5N2O4)2(H2O)2]

  • Mr = 429.21

  • Monoclinic, P 21 /c

  • a = 12.2047 (12) Å

  • b = 9.1607 (9) Å

  • c = 7.3860 (7) Å

  • β = 101.355 (2)°

  • V = 809.62 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 (2) K

  • 0.30 × 0.21 × 0.12 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.778, Tmax = 0.902

  • 5936 measured reflections

  • 1931 independent reflections

  • 1387 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 0.96

  • 1931 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O3i 0.77 (3) 2.01 (3) 2.763 (2) 168 (3)
O5—H5A⋯O4ii 0.78 (3) 1.98 (3) 2.760 (2) 174 (3)
N2—H2A⋯O1iii 0.86 2.06 2.841 (2) 151
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The use of multifunctional ligands to construct coordination polymers is of current interest due to their potential ability to generate new solid materials with novel network topologies by deliberate design (Ying & Mao, 2006). In these studies, much attention has been put into coordination polymers containing metals and N-heterocyclic carboxylic acids because they can exhibit abundant structural type and can be potentially used as functional materials (Nie et al., 2007; Liang et al., 2002; Net et al., 1989). In this paper, we report the synthesis and structure of a new manganese(II) complex obtained from 2-methyl-1H-imidazole-4,5-dicarboxylic acid (H3MIA).

The title mononuclear complex molecule contains one manganese(II) ion, two mono-deprotonated H2MIA ligands and two water molecules. The manganese(II) ion lies on an inversion centre and is six-coordinated by two carboxylate oxygen atoms and two nitrogen atoms of the H2MIA ligands, and by the oxygen atoms of two water molecules forming a slightly distorted octahedral geometry (Fig. 1). The Mn—O distances are 2.1433 (19) and 2.2103 (13) Å and the Mn—N distance is 2.2700 (16) Å. In the crystal packing, complex molecules are linked by intermolecular O—H···O and N—H···O hydrogen bonds to form a three-dimensional supermolecular structure (Fig. 2). The complex is isostructural with the corresponding cadmium(II) complex which has been reported recently (Nie et al., 2007).

Related literature top

For related literature, see: Liang et al. (2002); Net et al. (1989); Nie et al. (2007); Ying & Mao (2006)

Experimental top

A mixture of manganese(II) acetate (0.5 mmol, 0.120 g) and 2-methyl-1H-imidazole-4,5-dicarboxylic acid in 10 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 150°C for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

The water H atoms were located in a difference Fourier map and refined freely, with Uiso(H) = 1.5 Ueq(O). All other H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.86 Å, O—H = 0.82 Å and with Uiso(H) = 1.2 Ueq(N) or 1.5 Ueq(C, O)

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Version 5.1; Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code: (A) -x, -y + 1, -z.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Hydrogen atoms are omitted for clarity. The hydrogen bonds are drawn as dotted lines.
Diaquabis(5-carboxy-2-methyl-1H-imidazole-4-carboxylato- κ2N3,O4)manganese(II) top
Crystal data top
[Mn(C6H5N2O4)2(H2O)2]F(000) = 438
Mr = 429.21Dx = 1.761 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3147 reflections
a = 12.2047 (12) Åθ = 2.8–28.2°
b = 9.1607 (9) ŵ = 0.88 mm1
c = 7.3860 (7) ÅT = 293 K
β = 101.355 (2)°Plate, colourless
V = 809.62 (14) Å30.30 × 0.21 × 0.12 mm
Z = 2
Data collection top
Bruker APEX area-detector
diffractometer
1931 independent reflections
Radiation source: fine-focus sealed tube1387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1616
Tmin = 0.778, Tmax = 0.902k = 1212
5936 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
1931 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Mn(C6H5N2O4)2(H2O)2]V = 809.62 (14) Å3
Mr = 429.21Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.2047 (12) ŵ = 0.88 mm1
b = 9.1607 (9) ÅT = 293 K
c = 7.3860 (7) Å0.30 × 0.21 × 0.12 mm
β = 101.355 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
1931 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1387 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.902Rint = 0.033
5936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.35 e Å3
1931 reflectionsΔρmin = 0.35 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.50000.00000.02937 (16)
N10.18504 (13)0.50974 (16)0.1269 (2)0.0293 (4)
N20.35369 (14)0.52117 (17)0.2952 (3)0.0363 (4)
H2A0.41430.55770.35810.044*
O10.50357 (12)0.30235 (19)0.4426 (3)0.0559 (5)
O20.39335 (12)0.12886 (16)0.3029 (2)0.0484 (4)
H2B0.32980.12260.24150.073*
O30.19549 (11)0.11771 (14)0.1132 (2)0.0352 (4)
O40.06082 (11)0.27347 (14)0.01036 (19)0.0330 (3)
O50.02904 (16)0.4590 (2)0.2723 (3)0.0459 (5)
C10.2586 (2)0.7599 (2)0.2185 (4)0.0549 (7)
H1A0.18750.79220.15030.082*
H1B0.31720.80050.16450.082*
H1C0.26750.79150.34440.082*
C20.26397 (16)0.5981 (2)0.2124 (3)0.0339 (5)
C30.41682 (17)0.2662 (2)0.3431 (3)0.0370 (5)
C40.33359 (15)0.3766 (2)0.2638 (3)0.0309 (5)
C50.22732 (15)0.3710 (2)0.1569 (3)0.0273 (4)
C60.15691 (15)0.2449 (2)0.0818 (3)0.0277 (4)
H5B0.071 (2)0.499 (2)0.319 (4)0.041 (8)*
H5A0.001 (2)0.397 (3)0.336 (4)0.065 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0254 (2)0.0274 (2)0.0312 (3)0.00137 (17)0.00438 (17)0.00092 (17)
N10.0265 (9)0.0253 (8)0.0328 (10)0.0015 (6)0.0023 (7)0.0002 (7)
N20.0232 (8)0.0327 (10)0.0468 (12)0.0040 (7)0.0081 (7)0.0053 (8)
O10.0338 (9)0.0507 (10)0.0697 (12)0.0059 (7)0.0231 (8)0.0116 (9)
O20.0350 (8)0.0358 (9)0.0650 (11)0.0064 (7)0.0127 (7)0.0026 (7)
O30.0305 (7)0.0248 (7)0.0466 (9)0.0008 (6)0.0011 (6)0.0008 (6)
O40.0275 (7)0.0276 (7)0.0379 (9)0.0018 (6)0.0080 (6)0.0034 (6)
O50.0493 (11)0.0499 (10)0.0391 (10)0.0240 (9)0.0099 (8)0.0137 (8)
C10.0500 (15)0.0375 (13)0.071 (2)0.0001 (11)0.0042 (13)0.0063 (12)
C20.0283 (10)0.0309 (10)0.0388 (13)0.0037 (8)0.0029 (9)0.0022 (9)
C30.0276 (10)0.0376 (12)0.0415 (14)0.0043 (8)0.0037 (9)0.0016 (10)
C40.0244 (10)0.0317 (11)0.0335 (12)0.0012 (8)0.0022 (8)0.0025 (8)
C50.0230 (9)0.0293 (10)0.0275 (11)0.0010 (7)0.0003 (7)0.0006 (8)
C60.0255 (10)0.0276 (10)0.0286 (11)0.0023 (8)0.0015 (8)0.0010 (8)
Geometric parameters (Å, º) top
Mn1—O5i2.1433 (19)O2—H2B0.8200
Mn1—O52.1433 (19)O3—C61.261 (2)
Mn1—O42.2103 (13)O4—C61.262 (2)
Mn1—O4i2.2103 (13)O5—H5B0.77 (3)
Mn1—N12.2700 (16)O5—H5A0.78 (3)
Mn1—N1i2.2700 (16)C1—C21.485 (3)
N1—C21.320 (2)C1—H1A0.9600
N1—C51.373 (2)C1—H1B0.9600
N2—C21.344 (3)C1—H1C0.9600
N2—C41.358 (2)C3—C41.471 (3)
N2—H2A0.8600C4—C51.380 (3)
O1—C31.210 (2)C5—C61.481 (3)
O2—C31.311 (2)
O5i—Mn1—O5180.00 (10)Mn1—O5—H5A124 (2)
O5i—Mn1—O490.77 (6)H5B—O5—H5A110 (3)
O5—Mn1—O489.23 (6)C2—C1—H1A109.5
O5i—Mn1—O4i89.23 (6)C2—C1—H1B109.5
O5—Mn1—O4i90.77 (6)H1A—C1—H1B109.5
O4—Mn1—O4i180.00 (10)C2—C1—H1C109.5
O5i—Mn1—N192.62 (7)H1A—C1—H1C109.5
O5—Mn1—N187.38 (7)H1B—C1—H1C109.5
O4—Mn1—N174.79 (5)N1—C2—N2110.42 (18)
O4i—Mn1—N1105.21 (5)N1—C2—C1126.44 (19)
O5i—Mn1—N1i87.38 (7)N2—C2—C1123.14 (18)
O5—Mn1—N1i92.62 (7)O1—C3—O2121.74 (19)
O4—Mn1—N1i105.21 (5)O1—C3—C4120.44 (19)
O4i—Mn1—N1i74.79 (5)O2—C3—C4117.82 (17)
N1—Mn1—N1i180.00 (8)N2—C4—C5104.59 (16)
C2—N1—C5105.93 (16)N2—C4—C3121.00 (17)
C2—N1—Mn1142.63 (14)C5—C4—C3134.39 (18)
C5—N1—Mn1110.00 (11)N1—C5—C4109.80 (15)
C2—N2—C4109.25 (16)N1—C5—C6119.32 (16)
C2—N2—H2A125.4C4—C5—C6130.84 (17)
C4—N2—H2A125.4O4—C6—O3124.39 (16)
C3—O2—H2B109.5O4—C6—C5116.68 (16)
C6—O4—Mn1117.32 (11)O3—C6—C5118.93 (16)
Mn1—O5—H5B126 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O3ii0.77 (3)2.01 (3)2.763 (2)168 (3)
O5—H5A···O4iii0.78 (3)1.98 (3)2.760 (2)174 (3)
N2—H2A···O1iv0.862.062.841 (2)151
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C6H5N2O4)2(H2O)2]
Mr429.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.2047 (12), 9.1607 (9), 7.3860 (7)
β (°) 101.355 (2)
V3)809.62 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.30 × 0.21 × 0.12
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.778, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
5936, 1931, 1387
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 0.96
No. of reflections1931
No. of parameters132
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.35

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Version 5.1; Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O3i0.77 (3)2.01 (3)2.763 (2)168 (3)
O5—H5A···O4ii0.78 (3)1.98 (3)2.760 (2)174 (3)
N2—H2A···O1iii0.862.062.841 (2)151.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1.
 

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun. 5, 366–368.  Web of Science CSD CrossRef CAS Google Scholar
First citationNet, G., Bayon, J. C., Butler, W. M. & Rasmussen, P. (1989). J. Chem. Soc. Chem. Commun. pp. 1022–1023.  CrossRef Web of Science Google Scholar
First citationNie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753–m755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYing, S.-M. & Mao, J.-G. (2006). Cryst. Growth Des. 6, 964–968.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds