Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the title compound, (C12H24N2)2[Ni(NCS)6]·2H2O, comprises one cation, one half-anion and one water mol­ecule. The anion lies on an inversion centre and shows the expected octa­hedral coordination with only minor deviations from the ideal geometry. Inter­molecular O—H...S, O—H...N, C—H...S, C—H...O and C—H...N hydrogen-bonding inter­actions link all components into a three-dimensional extended network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807035416/rz2160sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807035416/rz2160Isup2.hkl
Contains datablock I

CCDC reference: 657630

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.038
  • wR factor = 0.105
  • Data-to-parameter ratio = 15.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - C1 .. 5.74 su PLAT230_ALERT_2_C Hirshfeld Test Diff for S3 - C3 .. 5.17 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N2 .. 5.80 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N3 .. 5.27 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C13 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C2 PLAT355_ALERT_3_C Long O-H Bond (0.82A) O1 - H1C ... 1.05 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.11
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Organo-inorganic hybrid compounds containing the hexakis(isothiocyanato)nickel(II) tetraanion have been the subject of several investigations, but the structural examples are scarce (Vicente et al., 1996; Kruger & McKee, 1996; Hoffman & Wood, 1982). In this work we present the crystal structure of a new hexakis(isothiocyanato)nickel(II) salt with the 5,8-diazoniadispiro[4.2.4.2]tetradecane dication.

The structure of the title compound (Fig. 1) comprises discrete (C12H24N2)2+ cations, [Ni(NCS)6]4- anions and water molecules in the ratio 2:1:2. The anion, which lies on an inversion centre, displays the expected N6-octahedral coordination with only minor deviations from the ideal geometry. In the cation, the six-membered ring displays a chair conformation, while the five-membered rings adopt a twist conformation. In the crystal structure, all components are linked into a three-dimensional extended network through intermolecular O—H···S, O—H···N, C—H···S, C—H···O and C—H···N hydrogen bonding interactions (Table 1, Fig. 2).

Related literature top

For structures containing the hexakis(isothiocyanato)nickel(II) tetraanion see: Vicente et al. (1996); Kruger & McKee (1996); Hoffman & Wood (1982).

Experimental top

The title salt was synthesized from the reaction of 5,8-diazoniadispiro[4.2.4.2]tetradecane dibromide (0.034 g, 0.1 mmol) in methanol (5 ml) and a mixture of NiCl2 (0.013 g, 0.1 mmol) and KNCS(0.074 g, 0.4 mmol) in DMF (10 ml). The resulting mixture was set aside for the formation of green crystals (yield 40%) after several days on slow evaporation of the solvent.

Refinement top

The methylene H atoms were positioned geometrically with C—H = 0.97 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecule were located from a difference Fourier map, and their positional and isotropic displacement parameters were refined.

Structure description top

Organo-inorganic hybrid compounds containing the hexakis(isothiocyanato)nickel(II) tetraanion have been the subject of several investigations, but the structural examples are scarce (Vicente et al., 1996; Kruger & McKee, 1996; Hoffman & Wood, 1982). In this work we present the crystal structure of a new hexakis(isothiocyanato)nickel(II) salt with the 5,8-diazoniadispiro[4.2.4.2]tetradecane dication.

The structure of the title compound (Fig. 1) comprises discrete (C12H24N2)2+ cations, [Ni(NCS)6]4- anions and water molecules in the ratio 2:1:2. The anion, which lies on an inversion centre, displays the expected N6-octahedral coordination with only minor deviations from the ideal geometry. In the cation, the six-membered ring displays a chair conformation, while the five-membered rings adopt a twist conformation. In the crystal structure, all components are linked into a three-dimensional extended network through intermolecular O—H···S, O—H···N, C—H···S, C—H···O and C—H···N hydrogen bonding interactions (Table 1, Fig. 2).

For structures containing the hexakis(isothiocyanato)nickel(II) tetraanion see: Vicente et al. (1996); Kruger & McKee (1996); Hoffman & Wood (1982).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. Unlabelled atoms and those with the suffix A are related to labelled atoms by the symmetry operation (2 - x, 1 - y, -z).
[Figure 2] Fig. 2. Packing diagram of the title compound. Dashed lines indicate hydrogen bonding interactions.
Bis(5,8-diazoniadispiro[4.2.4.2]tetradecane) hexakis(thiocyanato-κN)nickel(II) dihydrate top
Crystal data top
(C12H24N2)2[Ni(NCS)6]·2H2OF(000) = 884
Mr = 835.89Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5316 reflections
a = 9.959 (6) Åθ = 2.6–27.3°
b = 13.537 (8) ŵ = 0.85 mm1
c = 14.718 (9) ÅT = 273 K
β = 96.186 (10)°Block, green
V = 1973 (2) Å30.30 × 0.15 × 0.15 mm
Z = 2
Data collection top
Siemen SMART CCD
diffractometer
3660 independent reflections
Radiation source: fine-focus sealed tube3220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scanθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.857, Tmax = 0.884k = 1616
10750 measured reflectionsl = 917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.9458P]
where P = (Fo2 + 2Fc2)/3
3660 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
(C12H24N2)2[Ni(NCS)6]·2H2OV = 1973 (2) Å3
Mr = 835.89Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.959 (6) ŵ = 0.85 mm1
b = 13.537 (8) ÅT = 273 K
c = 14.718 (9) Å0.30 × 0.15 × 0.15 mm
β = 96.186 (10)°
Data collection top
Siemen SMART CCD
diffractometer
3660 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3220 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.884Rint = 0.024
10750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.57 e Å3
3660 reflectionsΔρmin = 0.40 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.00000.03897 (14)
S11.38818 (7)0.68186 (6)0.13836 (5)0.0622 (2)
S20.81710 (8)0.83015 (5)0.00780 (6)0.0666 (2)
S30.88411 (6)0.38952 (5)0.29815 (4)0.04961 (18)
O10.6492 (3)0.5411 (2)0.1087 (3)0.1166 (12)
N11.1787 (2)0.56492 (16)0.05640 (15)0.0542 (5)
N20.9026 (2)0.63532 (16)0.01364 (15)0.0535 (5)
N30.9581 (2)0.45753 (16)0.13052 (14)0.0502 (5)
N40.62283 (18)0.20076 (14)0.15891 (13)0.0422 (4)
N50.42206 (17)0.34300 (13)0.21603 (12)0.0364 (4)
C11.2661 (2)0.61201 (17)0.09023 (16)0.0439 (5)
C20.8688 (2)0.71628 (17)0.00460 (14)0.0394 (5)
C30.9277 (2)0.42916 (16)0.19955 (16)0.0387 (5)
C40.7825 (3)0.1334 (3)0.0665 (2)0.0785 (10)
H4A0.85090.08240.06630.094*
H4B0.80820.18860.03010.094*
C50.6463 (3)0.0939 (2)0.0289 (2)0.0677 (8)
H5A0.64890.02240.02420.081*
H5B0.61940.12110.03130.081*
C60.5482 (3)0.12534 (19)0.0955 (2)0.0591 (7)
H6A0.52140.06900.13000.071*
H6B0.46800.15460.06300.071*
C70.7685 (3)0.1662 (2)0.1626 (2)0.0613 (7)
H7A0.83050.21970.18070.074*
H7B0.78570.11190.20530.074*
C80.5808 (2)0.20186 (18)0.25351 (16)0.0478 (6)
H8A0.64260.24300.29230.057*
H8B0.58590.13540.27820.057*
C90.4389 (2)0.24057 (18)0.25463 (17)0.0481 (6)
H9A0.37650.19650.21940.058*
H9B0.41610.24080.31710.058*
C100.6074 (2)0.30442 (17)0.12066 (15)0.0425 (5)
H10A0.66950.34810.15650.051*
H10B0.63090.30470.05840.051*
C110.4657 (2)0.34236 (16)0.12166 (15)0.0397 (5)
H11A0.46030.40900.09720.048*
H11B0.40440.30120.08240.048*
C120.4972 (2)0.4200 (2)0.27791 (17)0.0500 (6)
H12A0.57750.39160.31100.060*
H12B0.52350.47570.24240.060*
C130.4000 (3)0.4514 (3)0.3420 (2)0.0799 (10)
H13A0.40990.41070.39660.096*
H13B0.41550.51980.35980.096*
C140.2636 (3)0.4392 (3)0.2928 (2)0.0667 (8)
H14A0.22730.50320.27320.080*
H14B0.20370.40970.33290.080*
C150.2732 (2)0.37487 (19)0.21222 (18)0.0503 (6)
H15A0.24620.41070.15620.060*
H15B0.21520.31760.21470.060*
H1B0.601 (8)0.604 (6)0.099 (5)0.20 (3)*
H1C0.720 (7)0.539 (5)0.061 (4)0.20 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0368 (2)0.0394 (2)0.0404 (2)0.00054 (15)0.00290 (17)0.00225 (16)
S10.0511 (4)0.0662 (4)0.0686 (5)0.0110 (3)0.0028 (3)0.0142 (3)
S20.0639 (4)0.0423 (4)0.0884 (6)0.0048 (3)0.0152 (4)0.0038 (3)
S30.0476 (3)0.0591 (4)0.0417 (3)0.0066 (3)0.0031 (3)0.0020 (3)
O10.0871 (19)0.0908 (19)0.183 (3)0.0212 (16)0.065 (2)0.043 (2)
N10.0489 (12)0.0552 (12)0.0569 (13)0.0076 (10)0.0013 (10)0.0038 (10)
N20.0581 (13)0.0509 (12)0.0510 (12)0.0082 (10)0.0033 (10)0.0004 (10)
N30.0477 (11)0.0547 (12)0.0483 (12)0.0014 (9)0.0059 (9)0.0048 (10)
N40.0379 (10)0.0412 (10)0.0461 (11)0.0066 (8)0.0014 (8)0.0067 (8)
N50.0308 (9)0.0411 (9)0.0368 (9)0.0007 (7)0.0021 (7)0.0006 (7)
C10.0434 (13)0.0446 (12)0.0445 (13)0.0024 (10)0.0080 (10)0.0055 (10)
C20.0364 (11)0.0467 (13)0.0342 (11)0.0010 (9)0.0002 (9)0.0031 (9)
C30.0318 (10)0.0378 (11)0.0456 (13)0.0006 (8)0.0003 (9)0.0036 (10)
C40.0634 (18)0.100 (2)0.074 (2)0.0218 (17)0.0169 (16)0.0242 (19)
C50.089 (2)0.0620 (17)0.0509 (16)0.0094 (15)0.0024 (15)0.0116 (13)
C60.0533 (15)0.0458 (13)0.0744 (18)0.0057 (11)0.0102 (13)0.0163 (12)
C70.0425 (14)0.0744 (18)0.0649 (17)0.0172 (12)0.0035 (12)0.0142 (14)
C80.0520 (14)0.0454 (13)0.0451 (13)0.0080 (10)0.0016 (11)0.0114 (10)
C90.0470 (13)0.0511 (13)0.0471 (13)0.0005 (10)0.0092 (10)0.0148 (11)
C100.0436 (12)0.0501 (13)0.0350 (11)0.0039 (10)0.0089 (9)0.0003 (9)
C110.0445 (12)0.0391 (11)0.0349 (11)0.0008 (9)0.0011 (9)0.0046 (9)
C120.0400 (12)0.0589 (14)0.0504 (14)0.0019 (11)0.0016 (10)0.0172 (12)
C130.0538 (16)0.114 (3)0.071 (2)0.0186 (17)0.0001 (15)0.0402 (19)
C140.0437 (14)0.090 (2)0.0682 (18)0.0034 (14)0.0135 (13)0.0182 (16)
C150.0319 (11)0.0584 (14)0.0593 (15)0.0062 (10)0.0004 (10)0.0016 (12)
Geometric parameters (Å, º) top
Ni1—N12.076 (2)C5—H5A0.9700
Ni1—N1i2.076 (2)C5—H5B0.9700
Ni1—N32.090 (2)C6—H6A0.9700
Ni1—N3i2.090 (2)C6—H6B0.9700
Ni1—N22.093 (2)C7—H7A0.9700
Ni1—N2i2.093 (2)C7—H7B0.9700
S1—C11.640 (3)C8—C91.508 (3)
S2—C21.629 (3)C8—H8A0.9700
S3—C31.649 (3)C8—H8B0.9700
O1—H1B0.99 (8)C9—H9A0.9700
O1—H1C1.05 (7)C9—H9B0.9700
N1—C11.148 (3)C10—C111.503 (3)
N2—C21.150 (3)C10—H10A0.9700
N3—C31.156 (3)C10—H10B0.9700
N4—C81.497 (3)C11—H11A0.9700
N4—C101.514 (3)C11—H11B0.9700
N4—C71.520 (3)C12—C131.485 (4)
N4—C61.522 (3)C12—H12A0.9700
N5—C111.499 (3)C12—H12B0.9700
N5—C91.501 (3)C13—C141.478 (4)
N5—C121.526 (3)C13—H13A0.9700
N5—C151.539 (3)C13—H13B0.9700
C4—C71.503 (4)C14—C151.483 (4)
C4—C51.507 (5)C14—H14A0.9700
C4—H4A0.9700C14—H14B0.9700
C4—H4B0.9700C15—H15A0.9700
C5—C61.517 (4)C15—H15B0.9700
N1—Ni1—N1i180.0C4—C7—H7A111.0
N1—Ni1—N389.79 (9)N4—C7—H7A111.0
N1i—Ni1—N390.21 (9)C4—C7—H7B111.0
N1—Ni1—N3i90.21 (9)N4—C7—H7B111.0
N1i—Ni1—N3i89.79 (9)H7A—C7—H7B109.0
N3—Ni1—N3i180.00 (11)N4—C8—C9111.71 (19)
N1—Ni1—N288.70 (10)N4—C8—H8A109.3
N1i—Ni1—N291.30 (10)C9—C8—H8A109.3
N3—Ni1—N290.68 (9)N4—C8—H8B109.3
N3i—Ni1—N289.32 (9)C9—C8—H8B109.3
N1—Ni1—N2i91.30 (10)H8A—C8—H8B107.9
N1i—Ni1—N2i88.70 (10)N5—C9—C8112.55 (19)
N3—Ni1—N2i89.32 (9)N5—C9—H9A109.1
N3i—Ni1—N2i90.68 (9)C8—C9—H9A109.1
N2—Ni1—N2i180.0N5—C9—H9B109.1
H1B—O1—H1C107 (5)C8—C9—H9B109.1
C1—N1—Ni1170.2 (2)H9A—C9—H9B107.8
C2—N2—Ni1162.9 (2)C11—C10—N4111.77 (18)
C3—N3—Ni1174.8 (2)C11—C10—H10A109.3
C8—N4—C10108.03 (17)N4—C10—H10A109.3
C8—N4—C7109.36 (19)C11—C10—H10B109.3
C10—N4—C7110.9 (2)N4—C10—H10B109.3
C8—N4—C6114.2 (2)H10A—C10—H10B107.9
C10—N4—C6111.73 (19)N5—C11—C10112.15 (17)
C7—N4—C6102.51 (18)N5—C11—H11A109.2
C11—N5—C9108.28 (17)C10—C11—H11A109.2
C11—N5—C12112.61 (17)N5—C11—H11B109.2
C9—N5—C12112.18 (19)C10—C11—H11B109.2
C11—N5—C15110.00 (17)H11A—C11—H11B107.9
C9—N5—C15109.93 (18)C13—C12—N5105.3 (2)
C12—N5—C15103.79 (17)C13—C12—H12A110.7
N1—C1—S1178.5 (2)N5—C12—H12A110.7
N2—C2—S2178.5 (2)C13—C12—H12B110.7
N3—C3—S3179.6 (2)N5—C12—H12B110.7
C7—C4—C5106.2 (3)H12A—C12—H12B108.8
C7—C4—H4A110.5C14—C13—C12106.5 (2)
C5—C4—H4A110.5C14—C13—H13A110.4
C7—C4—H4B110.5C12—C13—H13A110.4
C5—C4—H4B110.5C14—C13—H13B110.4
H4A—C4—H4B108.7C12—C13—H13B110.4
C4—C5—C6106.2 (2)H13A—C13—H13B108.6
C4—C5—H5A110.5C13—C14—C15108.8 (2)
C6—C5—H5A110.5C13—C14—H14A109.9
C4—C5—H5B110.5C15—C14—H14A109.9
C6—C5—H5B110.5C13—C14—H14B109.9
H5A—C5—H5B108.7C15—C14—H14B109.9
C5—C6—N4106.2 (2)H14A—C14—H14B108.3
C5—C6—H6A110.5C14—C15—N5106.28 (19)
N4—C6—H6A110.5C14—C15—H15A110.5
C5—C6—H6B110.5N5—C15—H15A110.5
N4—C6—H6B110.5C14—C15—H15B110.5
H6A—C6—H6B108.7N5—C15—H15B110.5
C4—C7—N4104.0 (2)H15A—C15—H15B108.7
N1—Ni1—N2—C268.3 (7)C15—N5—C9—C8175.6 (2)
N1i—Ni1—N2—C2111.7 (7)N4—C8—C9—N558.1 (3)
N3—Ni1—N2—C2158.1 (7)C8—N4—C10—C1156.7 (2)
N3i—Ni1—N2—C221.9 (7)C7—N4—C10—C11176.57 (19)
C7—C4—C5—C612.4 (4)C6—N4—C10—C1169.7 (2)
C4—C5—C6—N411.9 (3)C9—N5—C11—C1055.6 (2)
C8—N4—C6—C5149.4 (2)C12—N5—C11—C1069.0 (2)
C10—N4—C6—C587.6 (2)C15—N5—C11—C10175.73 (18)
C7—N4—C6—C531.2 (3)N4—C10—C11—N558.4 (2)
C5—C4—C7—N432.0 (3)C11—N5—C12—C13149.0 (2)
C8—N4—C7—C4160.3 (2)C9—N5—C12—C1388.6 (3)
C10—N4—C7—C480.7 (3)C15—N5—C12—C1330.0 (3)
C6—N4—C7—C438.7 (3)N5—C12—C13—C1429.0 (4)
C10—N4—C8—C956.3 (2)C12—C13—C14—C1516.5 (4)
C7—N4—C8—C9177.1 (2)C13—C14—C15—N52.7 (4)
C6—N4—C8—C968.7 (3)C11—N5—C15—C14140.7 (2)
C11—N5—C9—C855.4 (2)C9—N5—C15—C14100.1 (2)
C12—N5—C9—C869.4 (3)C12—N5—C15—C1420.0 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···S30.972.883.767 (3)153
C11—H11A···O10.972.593.269 (4)127
C12—H12B···O10.972.603.463 (5)149
O1—H1C···N21.05 (7)2.40 (7)3.273 (4)139 (5)
C6—H6A···S3ii0.972.773.587 (3)142
C6—H6B···S2iii0.972.883.775 (4)155
C15—H15A···N1iv0.972.603.507 (3)156
O1—H1B···S1iv0.99 (8)2.49 (8)3.290 (3)139 (6)
O1—H1C···N1i1.05 (7)2.52 (7)3.435 (5)145 (5)
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula(C12H24N2)2[Ni(NCS)6]·2H2O
Mr835.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)9.959 (6), 13.537 (8), 14.718 (9)
β (°) 96.186 (10)
V3)1973 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.30 × 0.15 × 0.15
Data collection
DiffractometerSiemen SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
10750, 3660, 3220
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.06
No. of reflections3660
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.40

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1994), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···S30.972.883.767 (3)153.4
C11—H11A···O10.972.593.269 (4)127.4
C12—H12B···O10.972.603.463 (5)148.6
O1—H1C···N21.05 (7)2.40 (7)3.273 (4)139 (5)
C6—H6A···S3i0.972.773.587 (3)142.0
C6—H6B···S2ii0.972.883.775 (4)154.7
C15—H15A···N1iii0.972.603.507 (3)156.0
O1—H1B···S1iii0.99 (8)2.49 (8)3.290 (3)139 (6)
O1—H1C···N1iv1.05 (7)2.52 (7)3.435 (5)145 (5)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+2, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds