Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the title salt, C12H9N2+·C5H6O6P·C5H7O6P·H2O, contains one 1,10-phenanthrolinium cation, one 1-oxo-2,6,7-trioxa-1-phosphabicyclo­[2.2.2]octane-4-carboxyl­ate anion, one 1-oxo-2,6,7-trioxa-1-phospha-bicyclo­[2.2.2]octane-4-carboxylic acid neutral mol­ecule and one water mol­ecule. In the anion, the oxygen atoms of the carboxyl­ate group are disordered over two positions, with site occupation factors ca 0.7:0.3. In the crystal structure, inter­molecular O—H...O and N—H...O hydrogen-bonding inter­actions result in the formation of a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032813/rz2150sup1.cif
Contains datablocks I, publication_text

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032813/rz2150Isup2.hkl
Contains datablock I

CCDC reference: 657701

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.053
  • wR factor = 0.159
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level C PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.56 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O8 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O10 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for P2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C9 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 3.66 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.28 PLAT301_ALERT_3_C Main Residue Disorder ......................... 5.00 Perc. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT415_ALERT_2_C Short Inter D-H..H-X H7B .. H13A .. 2.12 Ang.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 38
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 9 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Caged bicyclic phosphates are widely used as flame retardants in some polymers. As a low-toxicity and environmentally friendly flame retardant system, the phosphorus-nitrogen combination has been extensively studied. We report here the crystal structure of a new bicyclic phosphate cage compound.

The content of the asymmetric unit of the title salt is shown in Fig. 1. In the 1,10-phenanthrolinium cation, the C—N—C bond angle of 123.0 (3)° at the protonated N1 atom is significantly larger than that at the non-protonated N2 atom (116.4 (3)°). This widening is not unexpected, as analogous differences were already observed in previously reported monoprotonated phenanthrolines (Hensen et al., 1998, 2000; Guo, 2005). In the anion, the oxygen atoms O11 and O12 of the carboxylate group are positionally disordered over two position, with site occupation factors of 0.701 (15) and 0.299 (15) for the major and minor components respectively. In the crystal structure, ions and neutral molecules are linked into an extended three-dimensional network by O—H···O and N—H···O hydrogen bonding interactions (Table 1, Fig. 2).

Related literature top

For related literature, see: Guo (2005); Hensen et al. (1998, 2000).

Experimental top

The title salt was prepared by mixing ethanol solutions of 1-oxo-2,6,7-trioxa-1-phospha-bicyclo[2.2.2]octane-4-carboxylic acid (1.94 g in 10 ml) and 1,10-phenanthroline (1.8 g in 10 ml). The solution was stirred at room temperature for 10 min, after which the crystalline product was separated by filtration. The pure product (1.0 g) was heated and dissolved in water (25 ml). Single crystals suitable for X-ray analysis were obtained from this aqueous solution by slow evaporation of the solvent over a period of five days at room temperature.

Refinement top

All H atoms were included in the refinement in the riding model approximation, with N–H = 0.90 Å, C–H = 0.93–0.97 Å, and Uiso(H) = 1.2 Ueq(C, N).

Structure description top

Caged bicyclic phosphates are widely used as flame retardants in some polymers. As a low-toxicity and environmentally friendly flame retardant system, the phosphorus-nitrogen combination has been extensively studied. We report here the crystal structure of a new bicyclic phosphate cage compound.

The content of the asymmetric unit of the title salt is shown in Fig. 1. In the 1,10-phenanthrolinium cation, the C—N—C bond angle of 123.0 (3)° at the protonated N1 atom is significantly larger than that at the non-protonated N2 atom (116.4 (3)°). This widening is not unexpected, as analogous differences were already observed in previously reported monoprotonated phenanthrolines (Hensen et al., 1998, 2000; Guo, 2005). In the anion, the oxygen atoms O11 and O12 of the carboxylate group are positionally disordered over two position, with site occupation factors of 0.701 (15) and 0.299 (15) for the major and minor components respectively. In the crystal structure, ions and neutral molecules are linked into an extended three-dimensional network by O—H···O and N—H···O hydrogen bonding interactions (Table 1, Fig. 2).

For related literature, see: Guo (2005); Hensen et al. (1998, 2000).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Only the major component of disorder is shown.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing hydrogen-bond interactions as dashed lines.
1,10-Phenanthrolin-1-ium 1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-carboxylate 1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-carboxylic acid monohydrate top
Crystal data top
C12H9N2+·C5H6O6P·C5H7O6P·H2OF(000) = 1216
Mr = 586.37Dx = 1.594 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2791 reflections
a = 9.2841 (18) Åθ = 2.5–26.3°
b = 8.5863 (16) ŵ = 0.25 mm1
c = 31.124 (6) ÅT = 294 K
β = 99.917 (5)°Prism, colorless
V = 2444.0 (8) Å30.20 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
5008 independent reflections
Radiation source: fine-focus sealed tube2956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 26.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 118
Tmin = 0.948, Tmax = 0.972k = 1010
13684 measured reflectionsl = 3836
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.655P]
where P = (Fo2 + 2Fc2)/3
5008 reflections(Δ/σ)max = 0.001
371 parametersΔρmax = 0.35 e Å3
38 restraintsΔρmin = 0.32 e Å3
Crystal data top
C12H9N2+·C5H6O6P·C5H7O6P·H2OV = 2444.0 (8) Å3
Mr = 586.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2841 (18) ŵ = 0.25 mm1
b = 8.5863 (16) ÅT = 294 K
c = 31.124 (6) Å0.20 × 0.16 × 0.12 mm
β = 99.917 (5)°
Data collection top
Bruker SMART CCD area detector
diffractometer
5008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2956 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.972Rint = 0.043
13684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05338 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
5008 reflectionsΔρmin = 0.32 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P11.15068 (9)0.02050 (10)0.95898 (3)0.0336 (2)
O11.2593 (2)0.0302 (3)0.99848 (7)0.0451 (6)
O21.2147 (2)0.0221 (3)0.91570 (7)0.0514 (7)
O31.0366 (2)0.1551 (3)0.95336 (7)0.0440 (6)
O41.0576 (2)0.1324 (3)0.95573 (7)0.0460 (6)
O50.8678 (3)0.0305 (3)0.81115 (7)0.0533 (7)
O60.7046 (2)0.0035 (3)0.85531 (7)0.0554 (7)
H6C0.63350.01000.83390.066*
C11.1025 (4)0.0206 (5)0.87599 (10)0.0477 (9)
H1A1.12200.06370.85710.057*
H1B1.10550.11780.86030.057*
C20.9191 (3)0.1378 (4)0.91576 (10)0.0387 (8)
H2A0.91090.23210.89830.046*
H2B0.82680.12100.92560.046*
C30.9521 (4)0.1485 (4)0.91557 (10)0.0426 (8)
H3A0.85520.16520.92240.051*
H3B0.97720.23770.89920.051*
C40.9527 (3)0.0008 (3)0.88813 (9)0.0308 (7)
C50.8348 (4)0.0131 (4)0.84658 (10)0.0370 (8)
P20.91080 (11)0.49646 (13)0.82372 (3)0.0523 (3)
O71.0150 (3)0.4764 (4)0.86362 (9)0.0841 (10)
O80.8420 (4)0.3432 (3)0.80474 (10)0.0960 (11)
O90.7750 (3)0.5977 (4)0.82963 (7)0.0649 (8)
O100.9709 (3)0.5822 (4)0.78669 (8)0.0795 (10)
C60.7333 (5)0.3608 (5)0.76470 (14)0.0862 (13)
H6A0.63960.32050.76940.103*
H6B0.76380.30210.74120.103*
C70.6693 (4)0.6187 (5)0.78974 (10)0.0575 (10)
H7A0.65940.72870.78280.069*
H7B0.57470.57980.79400.069*
C80.8643 (4)0.5989 (6)0.74632 (11)0.0712 (12)
H8A0.89930.54470.72280.085*
H8B0.85300.70810.73860.085*
C90.7185 (4)0.5323 (4)0.75239 (10)0.0440 (8)
C100.6033 (4)0.5554 (5)0.71121 (11)0.0549 (10)
O110.5054 (7)0.4583 (8)0.7037 (2)0.0620 (19)0.701 (15)
O120.6099 (9)0.6825 (11)0.6909 (3)0.123 (4)0.701 (15)
O11'0.4766 (12)0.5159 (19)0.7151 (4)0.048 (3)0.299 (15)
O12'0.6430 (10)0.553 (3)0.6759 (3)0.075 (7)0.299 (15)
N10.5028 (3)0.8006 (3)0.96061 (8)0.0342 (6)
H10.56550.85890.97900.041*
N20.5012 (3)0.7655 (3)1.04740 (8)0.0381 (7)
C110.5104 (4)0.8262 (4)0.91909 (10)0.0386 (8)
H110.57430.90090.91160.046*
C120.4235 (4)0.7417 (4)0.88690 (10)0.0422 (8)
H120.42960.75830.85770.051*
C130.3281 (4)0.6333 (4)0.89802 (10)0.0399 (8)
H130.26970.57620.87630.048*
C140.3182 (3)0.6079 (4)0.94211 (9)0.0339 (7)
C150.2217 (4)0.4975 (4)0.95668 (11)0.0402 (8)
H150.16030.43790.93630.048*
C160.2182 (4)0.4786 (4)0.99920 (11)0.0405 (8)
H160.15430.40601.00780.049*
C170.3105 (3)0.5678 (4)1.03176 (10)0.0345 (7)
C180.3133 (4)0.5502 (4)1.07702 (11)0.0410 (8)
H180.25170.47911.08730.049*
C190.4072 (4)0.6385 (4)1.10530 (10)0.0450 (9)
H190.41030.62831.13520.054*
C200.4988 (4)0.7445 (4)1.08938 (10)0.0437 (8)
H200.56170.80391.10940.052*
C210.4079 (3)0.6769 (3)1.01926 (9)0.0316 (7)
C220.4103 (3)0.6958 (3)0.97354 (9)0.0307 (7)
O130.3103 (4)0.5046 (4)0.79112 (13)0.1197 (14)
H13A0.35800.50700.77020.144*
H13B0.25720.42550.78590.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0254 (4)0.0425 (5)0.0304 (4)0.0021 (4)0.0018 (3)0.0021 (4)
O10.0347 (13)0.0596 (15)0.0368 (13)0.0045 (11)0.0062 (10)0.0028 (11)
O20.0258 (12)0.0915 (19)0.0353 (13)0.0075 (13)0.0008 (10)0.0068 (12)
O30.0435 (13)0.0436 (13)0.0386 (13)0.0066 (11)0.0103 (11)0.0131 (10)
O40.0449 (13)0.0411 (13)0.0435 (13)0.0065 (11)0.0160 (11)0.0080 (10)
O50.0522 (16)0.0778 (18)0.0279 (13)0.0068 (14)0.0014 (11)0.0081 (12)
O60.0284 (13)0.096 (2)0.0361 (13)0.0018 (13)0.0098 (10)0.0016 (12)
C10.0307 (18)0.079 (3)0.0318 (18)0.0028 (18)0.0019 (14)0.0056 (17)
C20.0358 (18)0.0419 (19)0.0338 (17)0.0050 (16)0.0065 (14)0.0004 (14)
C30.0415 (19)0.0357 (18)0.0437 (19)0.0049 (16)0.0126 (16)0.0013 (15)
C40.0280 (16)0.0373 (17)0.0253 (14)0.0001 (14)0.0009 (13)0.0020 (13)
C50.0346 (19)0.0387 (19)0.0347 (18)0.0041 (15)0.0020 (15)0.0002 (14)
P20.0441 (6)0.0700 (7)0.0351 (5)0.0119 (5)0.0156 (4)0.0103 (5)
O70.0680 (19)0.121 (3)0.0496 (17)0.0271 (19)0.0275 (15)0.0276 (16)
O80.114 (2)0.0543 (17)0.091 (2)0.0021 (17)0.0649 (19)0.0064 (15)
O90.0637 (18)0.098 (2)0.0291 (13)0.0002 (17)0.0041 (12)0.0061 (13)
O100.0362 (15)0.152 (3)0.0465 (15)0.0141 (18)0.0035 (12)0.0238 (17)
C60.097 (3)0.062 (2)0.078 (2)0.005 (2)0.049 (2)0.005 (2)
C70.049 (2)0.080 (3)0.0385 (19)0.008 (2)0.0056 (17)0.0008 (18)
C80.044 (2)0.132 (3)0.0354 (19)0.002 (2)0.0004 (17)0.020 (2)
C90.0395 (16)0.0621 (18)0.0262 (14)0.0012 (15)0.0059 (13)0.0023 (14)
C100.047 (2)0.082 (3)0.0306 (19)0.003 (2)0.0077 (17)0.0063 (19)
O110.057 (3)0.054 (3)0.061 (4)0.004 (3)0.029 (3)0.002 (3)
O120.142 (6)0.109 (6)0.086 (5)0.055 (5)0.069 (4)0.050 (5)
O11'0.039 (5)0.058 (6)0.043 (5)0.005 (4)0.003 (3)0.008 (4)
O12'0.034 (5)0.167 (19)0.023 (5)0.007 (7)0.004 (4)0.017 (6)
N10.0300 (14)0.0383 (15)0.0320 (14)0.0016 (12)0.0013 (11)0.0033 (12)
N20.0384 (16)0.0431 (16)0.0301 (14)0.0013 (13)0.0012 (12)0.0031 (12)
C110.0359 (18)0.0440 (19)0.0356 (18)0.0008 (16)0.0054 (15)0.0050 (15)
C120.041 (2)0.054 (2)0.0303 (17)0.0072 (18)0.0030 (15)0.0022 (15)
C130.0374 (18)0.046 (2)0.0321 (17)0.0033 (16)0.0059 (15)0.0053 (14)
C140.0286 (16)0.0368 (18)0.0338 (17)0.0035 (15)0.0022 (14)0.0037 (14)
C150.0321 (18)0.0385 (19)0.0459 (19)0.0049 (15)0.0049 (15)0.0050 (15)
C160.0355 (19)0.0371 (19)0.048 (2)0.0038 (15)0.0040 (16)0.0040 (15)
C170.0321 (17)0.0329 (17)0.0376 (18)0.0078 (14)0.0038 (14)0.0015 (14)
C180.044 (2)0.0394 (19)0.0413 (19)0.0061 (16)0.0128 (16)0.0061 (15)
C190.050 (2)0.054 (2)0.0322 (18)0.0080 (19)0.0088 (16)0.0034 (16)
C200.042 (2)0.051 (2)0.0351 (19)0.0040 (17)0.0004 (16)0.0075 (16)
C210.0294 (16)0.0341 (17)0.0296 (16)0.0061 (14)0.0003 (13)0.0016 (13)
C220.0267 (15)0.0322 (16)0.0312 (16)0.0027 (14)0.0011 (13)0.0002 (13)
O130.093 (3)0.120 (3)0.149 (4)0.018 (2)0.029 (3)0.022 (2)
Geometric parameters (Å, º) top
P1—O11.452 (2)C8—H8A0.9700
P1—O31.557 (2)C8—H8B0.9700
P1—O21.563 (2)C9—C101.535 (4)
P1—O41.565 (2)C10—O12'1.218 (8)
O2—C11.473 (4)C10—O111.225 (6)
O3—C21.463 (3)C10—O11'1.250 (11)
O4—C31.455 (3)C10—O121.268 (6)
O5—C51.204 (4)N1—C111.325 (4)
O6—C51.286 (4)N1—C221.352 (4)
O6—H6C0.8548N1—H10.8964
C1—C41.513 (4)N2—C201.323 (4)
C1—H1A0.9700N2—C211.354 (4)
C1—H1B0.9700C11—C121.379 (4)
C2—C41.532 (4)C11—H110.9300
C2—H2A0.9700C12—C131.369 (5)
C2—H2B0.9700C12—H120.9300
C3—C41.529 (4)C13—C141.408 (4)
C3—H3A0.9700C13—H130.9300
C3—H3B0.9700C14—C221.404 (4)
C4—C51.547 (4)C14—C151.430 (4)
P2—O71.447 (3)C15—C161.339 (5)
P2—O81.536 (3)C15—H150.9300
P2—O101.550 (3)C16—C171.431 (4)
P2—O91.568 (3)C16—H160.9300
O8—C61.470 (4)C17—C211.403 (4)
O9—C71.455 (4)C17—C181.413 (4)
O10—C81.467 (4)C18—C191.359 (5)
C6—C91.522 (5)C18—H180.9300
C6—H6A0.9700C19—C201.393 (5)
C6—H6B0.9700C19—H190.9300
C7—C91.514 (5)C20—H200.9300
C7—H7A0.9700C21—C221.436 (4)
C7—H7B0.9700O13—H13A0.8488
C8—C91.511 (5)O13—H13B0.8393
O1—P1—O3114.37 (13)C9—C8—H8A109.7
O1—P1—O2114.69 (14)O10—C8—H8B109.7
O3—P1—O2104.42 (13)C9—C8—H8B109.7
O1—P1—O4113.44 (13)H8A—C8—H8B108.2
O3—P1—O4104.95 (13)C8—C9—C7107.8 (3)
O2—P1—O4103.81 (13)C8—C9—C6110.7 (4)
C1—O2—P1113.86 (19)C7—C9—C6107.9 (3)
C2—O3—P1114.43 (18)C8—C9—C10110.9 (3)
C3—O4—P1114.66 (18)C7—C9—C10108.6 (3)
C5—O6—H6C117.4C6—C9—C10110.8 (3)
O2—C1—C4109.8 (2)O12'—C10—O1198.3 (8)
O2—C1—H1A109.7O12'—C10—O11'121.3 (8)
C4—C1—H1A109.7O12'—C10—O1261.1 (7)
O2—C1—H1B109.7O11—C10—O12126.0 (4)
C4—C1—H1B109.7O11'—C10—O12114.1 (7)
H1A—C1—H1B108.2O12'—C10—C9118.4 (5)
O3—C2—C4109.4 (2)O11—C10—C9117.4 (4)
O3—C2—H2A109.8O11'—C10—C9114.6 (6)
C4—C2—H2A109.8O12—C10—C9116.1 (4)
O3—C2—H2B109.8C11—N1—C22123.0 (3)
C4—C2—H2B109.8C11—N1—H1113.2
H2A—C2—H2B108.2C22—N1—H1123.8
O4—C3—C4109.5 (2)C20—N2—C21116.4 (3)
O4—C3—H3A109.8N1—C11—C12119.9 (3)
C4—C3—H3A109.8N1—C11—H11120.0
O4—C3—H3B109.8C12—C11—H11120.0
C4—C3—H3B109.8C13—C12—C11119.8 (3)
H3A—C3—H3B108.2C13—C12—H12120.1
C1—C4—C3109.4 (3)C11—C12—H12120.1
C1—C4—C2109.3 (3)C12—C13—C14120.4 (3)
C3—C4—C2108.1 (3)C12—C13—H13119.8
C1—C4—C5110.4 (2)C14—C13—H13119.8
C3—C4—C5109.9 (2)C22—C14—C13117.5 (3)
C2—C4—C5109.8 (2)C22—C14—C15118.4 (3)
O5—C5—O6126.8 (3)C13—C14—C15124.2 (3)
O5—C5—C4121.3 (3)C16—C15—C14121.1 (3)
O6—C5—C4112.0 (3)C16—C15—H15119.4
O7—P2—O8113.61 (17)C14—C15—H15119.4
O7—P2—O10114.93 (16)C15—C16—C17121.4 (3)
O8—P2—O10107.47 (19)C15—C16—H16119.3
O7—P2—O9113.40 (18)C17—C16—H16119.3
O8—P2—O9103.32 (18)C21—C17—C18116.5 (3)
O10—P2—O9102.94 (17)C21—C17—C16119.8 (3)
C6—O8—P2114.7 (2)C18—C17—C16123.7 (3)
C7—O9—P2114.0 (2)C19—C18—C17119.1 (3)
C8—O10—P2114.0 (2)C19—C18—H18120.5
O8—C6—C9109.4 (3)C17—C18—H18120.5
O8—C6—H6A109.8C18—C19—C20119.8 (3)
C9—C6—H6A109.8C18—C19—H19120.1
O8—C6—H6B109.8C20—C19—H19120.1
C9—C6—H6B109.8N2—C20—C19123.7 (3)
H6A—C6—H6B108.2N2—C20—H20118.1
O9—C7—C9110.2 (3)C19—C20—H20118.1
O9—C7—H7A109.6N2—C21—C17124.5 (3)
C9—C7—H7A109.6N2—C21—C22117.4 (3)
O9—C7—H7B109.6C17—C21—C22118.1 (3)
C9—C7—H7B109.6N1—C22—C14119.5 (3)
H7A—C7—H7B108.1N1—C22—C21119.3 (3)
O10—C8—C9110.0 (3)C14—C22—C21121.2 (3)
O10—C8—H8A109.7H13A—O13—H13B103.8
O1—P1—O2—C1176.9 (2)O8—C6—C9—C760.0 (5)
O3—P1—O2—C151.0 (3)O8—C6—C9—C10178.8 (4)
O4—P1—O2—C158.7 (3)C8—C9—C10—O12'32.4 (13)
O1—P1—O3—C2174.5 (2)C7—C9—C10—O12'150.7 (13)
O2—P1—O3—C259.3 (2)C6—C9—C10—O12'91.0 (13)
O4—P1—O3—C249.6 (2)C8—C9—C10—O11150.2 (7)
O1—P1—O4—C3177.4 (2)C7—C9—C10—O1191.5 (7)
O3—P1—O4—C357.0 (2)C6—C9—C10—O1126.8 (7)
O2—P1—O4—C352.3 (2)C8—C9—C10—O11'173.8 (10)
P1—O2—C1—C46.5 (4)C7—C9—C10—O11'55.5 (10)
P1—O3—C2—C47.5 (3)C6—C9—C10—O11'62.8 (10)
P1—O4—C3—C44.5 (3)C8—C9—C10—O1237.3 (8)
O2—C1—C4—C355.4 (3)C7—C9—C10—O1281.0 (8)
O2—C1—C4—C262.7 (3)C6—C9—C10—O12160.7 (8)
O2—C1—C4—C5176.4 (3)C22—N1—C11—C121.3 (5)
O4—C3—C4—C161.9 (3)N1—C11—C12—C130.9 (5)
O4—C3—C4—C257.0 (3)C11—C12—C13—C140.2 (5)
O4—C3—C4—C5176.9 (3)C12—C13—C14—C220.8 (5)
O3—C2—C4—C154.9 (3)C12—C13—C14—C15179.9 (3)
O3—C2—C4—C364.1 (3)C22—C14—C15—C160.4 (5)
O3—C2—C4—C5176.1 (2)C13—C14—C15—C16179.7 (3)
C1—C4—C5—O512.0 (4)C14—C15—C16—C170.0 (5)
C3—C4—C5—O5108.7 (3)C15—C16—C17—C210.4 (5)
C2—C4—C5—O5132.6 (3)C15—C16—C17—C18178.7 (3)
C1—C4—C5—O6168.5 (3)C21—C17—C18—C190.4 (4)
C3—C4—C5—O670.9 (3)C16—C17—C18—C19178.7 (3)
C2—C4—C5—O647.9 (4)C17—C18—C19—C200.0 (5)
O7—P2—O8—C6178.7 (3)C21—N2—C20—C190.0 (5)
O10—P2—O8—C653.0 (4)C18—C19—C20—N20.3 (5)
O9—P2—O8—C655.4 (4)C20—N2—C21—C170.5 (4)
O7—P2—O9—C7180.0 (3)C20—N2—C21—C22179.0 (3)
O8—P2—O9—C756.5 (3)C18—C17—C21—N20.7 (4)
O10—P2—O9—C755.2 (3)C16—C17—C21—N2179.1 (3)
O7—P2—O10—C8179.0 (3)C18—C17—C21—C22178.8 (3)
O8—P2—O10—C851.5 (3)C16—C17—C21—C220.4 (4)
O9—P2—O10—C857.2 (3)C11—N1—C22—C140.6 (4)
P2—O8—C6—C90.3 (5)C11—N1—C22—C21179.2 (3)
P2—O9—C7—C91.1 (4)C13—C14—C22—N10.5 (4)
P2—O10—C8—C92.4 (5)C15—C14—C22—N1179.8 (3)
O10—C8—C9—C758.6 (4)C13—C14—C22—C21179.7 (3)
O10—C8—C9—C659.2 (5)C15—C14—C22—C210.4 (4)
O10—C8—C9—C10177.4 (3)N2—C21—C22—N10.7 (4)
O9—C7—C9—C860.6 (4)C17—C21—C22—N1179.8 (3)
O9—C7—C9—C659.0 (4)N2—C21—C22—C14179.5 (3)
O9—C7—C9—C10179.2 (3)C17—C21—C22—C140.0 (4)
O8—C6—C9—C857.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13B···O12i0.842.472.893 (9)112
N1—H1···O1ii0.901.912.765 (3)159
O6—H6C···O11i0.851.612.459 (5)173
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H9N2+·C5H6O6P·C5H7O6P·H2O
Mr586.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.2841 (18), 8.5863 (16), 31.124 (6)
β (°) 99.917 (5)
V3)2444.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.948, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
13684, 5008, 2956
Rint0.043
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.159, 1.03
No. of reflections5008
No. of parameters371
No. of restraints38
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13B···O12i0.842.472.893 (9)112.4
N1—H1···O1ii0.901.912.765 (3)158.6
O6—H6C···O11i0.851.612.459 (5)173.1
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y+1, z+2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds