Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The trinuclear nickel(II) title compound, [Ni3(C15H12­N2O4)2(C5H5N)2(C3H6NO)2], possesses a crystallographically imposed centre of symmetry. The central Ni atom adopts an axially elongated octa­hedral geometry, involving two N and two O atoms from two phenoxy­acetyl­salicylhydrazidate ligands in the equatorial plane and two O atoms from two dimethyl­formamide mol­ecules in the axial positions. The inversion-related outer Ni atoms have square-planar coordination environments provided by two O atoms and one N atom of a phenoxy­acetyl­salicylhydrazidate ligand and by the N atom of a pyridine mol­ecule. The shortest metal–metal separation is 4.6038 (11) Å. The mol­ecular structure is stabilized by intra­molecular C—H...O hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030498/rz2145sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030498/rz2145Isup2.hkl
Contains datablock I

CCDC reference: 654825

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.060
  • wR factor = 0.129
  • Data-to-parameter ratio = 17.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (3) 2.89 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni2 (2) 2.08
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Hydrazide and its analogues have found practical applications in catalysis (Chatterjee & Mitra, 1999; Chatterjee et al., 2000; Kureshy et al., 2000) and in biochemistry (Belicchi Ferrari et al., 2000; Shi et al., 2001). N-Acylsalicylhydrazides, which contain several donor atoms, are strong chelating agents and are particularly well suited for the preparation of multinuclear complexes. We report here the synthesis and crystal structure of a new trinuclear nickel(II) complex, (I), containing the N-phenoxyacetylsalicylhydrazidate ligand.

The trinuclear nickel(II) complex possesses a crystallographycally imposed centre of symmetry. In the molecule, the central nickel atom Ni2 (Fig.1) has an axially elongated octahedral coordination of Ni(ON)(ON)(O)(O) type. The Ni2—O2 and Ni2—N2 bond distances at the equatorial plane (2.007 (3) and 2.047 (3) Å respectively) are shorter than the corresponding bond lengths in similar nickel(II) complexes (Yang et al., 2003; Yang & Lin, 2005; Butcher et al., 1981; Bermejo et al., 1999). The O atoms of the two dimethylformamide molecules occupy the axial positions at longer distances [Ni2—O5 = 2.147 (3) Å]. The outer Ni atoms (Ni1, Ni1A) adopt a square-planar geometry. The Ni—N(hydrazide) and Ni—N(py) bond distances are 1.838 (4) and 1.940 (1) Å, respectively. The Ni—O(carbonyl) distances are 1.814 (36) and 1.854 (38) Å, respectively. The Ni1···Ni2 distance is 4.6038 (11) Å, whereas the Ni1···Ni1A separation is 9.208 (2) Å, which is in good agreement with the corresponding values [9.2030 (8) - 9.1876 (9) Å] reported for bis[µ-(N-butylsalicylhydrazidate)(pyridine)nickel(II)]bispyridinenickel(II) (Yang et al., 2003) and shorter than that found in bis(µ2-N'-benzoyl-2-oxybenzoylhydrazidato)-bis(dimethylformamide)- dipyridine-trinickel(ii) [9.3038 (7) Å; Yang & Lin, 2005). The molecular structure is stabilized by intramolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For general background, see: Belicchi Ferrari et al. (2000); Chatterjee & Mitra (1999); Chatterjee et al. (2000); Kureshy et al. (2000); Shi et al. (2001). For related structures, see: Bermejo et al. (1999); Butcher et al. (1981); Yang et al. (2003); Yang & Lin (2005).

Experimental top

Two drops of pyridine were added to a solution of N-phenoxyacetylsalicylhydrazide (0.0286 g, 0.1 mmol) and NiCl2.6H2O (0.0475 g, 0.2 mmol) in ethanol (3 ml), chloroform (7 ml) and DMF (2 ml). The resulting red solution was stirred for 2 h and then filtered. Red crystals suitable for X-ray analysis were obtained after 6 days on slow evaporation of the solvent.

Refinement top

All H atoms were placed in idealized positions an refined using the riding-model approximation, with C—H = 0.93–0.97 Å, and with Uiso (H) = 1.2Ueq(C) or 1.5 Ueq(C) for the methyl groups.

Structure description top

Hydrazide and its analogues have found practical applications in catalysis (Chatterjee & Mitra, 1999; Chatterjee et al., 2000; Kureshy et al., 2000) and in biochemistry (Belicchi Ferrari et al., 2000; Shi et al., 2001). N-Acylsalicylhydrazides, which contain several donor atoms, are strong chelating agents and are particularly well suited for the preparation of multinuclear complexes. We report here the synthesis and crystal structure of a new trinuclear nickel(II) complex, (I), containing the N-phenoxyacetylsalicylhydrazidate ligand.

The trinuclear nickel(II) complex possesses a crystallographycally imposed centre of symmetry. In the molecule, the central nickel atom Ni2 (Fig.1) has an axially elongated octahedral coordination of Ni(ON)(ON)(O)(O) type. The Ni2—O2 and Ni2—N2 bond distances at the equatorial plane (2.007 (3) and 2.047 (3) Å respectively) are shorter than the corresponding bond lengths in similar nickel(II) complexes (Yang et al., 2003; Yang & Lin, 2005; Butcher et al., 1981; Bermejo et al., 1999). The O atoms of the two dimethylformamide molecules occupy the axial positions at longer distances [Ni2—O5 = 2.147 (3) Å]. The outer Ni atoms (Ni1, Ni1A) adopt a square-planar geometry. The Ni—N(hydrazide) and Ni—N(py) bond distances are 1.838 (4) and 1.940 (1) Å, respectively. The Ni—O(carbonyl) distances are 1.814 (36) and 1.854 (38) Å, respectively. The Ni1···Ni2 distance is 4.6038 (11) Å, whereas the Ni1···Ni1A separation is 9.208 (2) Å, which is in good agreement with the corresponding values [9.2030 (8) - 9.1876 (9) Å] reported for bis[µ-(N-butylsalicylhydrazidate)(pyridine)nickel(II)]bispyridinenickel(II) (Yang et al., 2003) and shorter than that found in bis(µ2-N'-benzoyl-2-oxybenzoylhydrazidato)-bis(dimethylformamide)- dipyridine-trinickel(ii) [9.3038 (7) Å; Yang & Lin, 2005). The molecular structure is stabilized by intramolecular C—H···O hydrogen bonds (Table 1).

For general background, see: Belicchi Ferrari et al. (2000); Chatterjee & Mitra (1999); Chatterjee et al. (2000); Kureshy et al. (2000); Shi et al. (2001). For related structures, see: Bermejo et al. (1999); Butcher et al. (1981); Yang et al. (2003); Yang & Lin (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1993); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the title compound with 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [symmetry code: (A) 1/2 - x, 3/2 - y, 1 - z]
Bis(dimethylformamide-2κO)bis[µ-1-(2-oxidobenzoyl)-2- (phenoxyacetyl)hydrazine(3-)]- 1κ3O,N,O':2κ2N,O'';2κ2N,O'':3κ3O,N,O'-dipyridine-1κN,3κN- trinickel(II) top
Crystal data top
[Ni3(C15H12N2O4)2(C5H5N)2(C3H6NO)2]F(000) = 2168
Mr = 1046.98Dx = 1.510 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13455 reflections
a = 28.646 (6) Åθ = 3.1–27.5°
b = 8.2490 (16) ŵ = 1.28 mm1
c = 21.176 (4) ÅT = 298 K
β = 112.98 (3)°Block, red
V = 4606.8 (19) Å30.21 × 0.18 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3189 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 3735
21350 measured reflectionsk = 1010
5266 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.008P)2 + 4.5359P]
where P = (Fo2 + 2Fc2)/3
5266 reflections(Δ/σ)max < 0.001
306 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ni3(C15H12N2O4)2(C5H5N)2(C3H6NO)2]V = 4606.8 (19) Å3
Mr = 1046.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.646 (6) ŵ = 1.28 mm1
b = 8.2490 (16) ÅT = 298 K
c = 21.176 (4) Å0.21 × 0.18 × 0.18 mm
β = 112.98 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3189 reflections with I > 2σ(I)
21350 measured reflectionsRint = 0.065
5266 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.00Δρmax = 0.50 e Å3
5266 reflectionsΔρmin = 0.65 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.19205 (3)0.36882 (8)0.32794 (3)0.0538 (2)
Ni20.25000.75000.50000.0429 (2)
O10.13443 (13)0.4435 (4)0.26024 (17)0.0628 (10)
O20.18921 (12)0.8037 (4)0.41488 (14)0.0496 (8)
O30.25040 (12)0.2981 (4)0.39945 (15)0.0520 (8)
O40.35544 (13)0.3998 (4)0.49849 (16)0.0593 (9)
O50.29860 (14)0.8574 (4)0.45592 (17)0.0581 (9)
N10.20072 (14)0.5505 (4)0.38186 (18)0.0451 (9)
N20.24345 (14)0.5421 (4)0.44438 (17)0.0443 (9)
N30.18937 (17)0.1722 (5)0.2764 (2)0.0567 (11)
N40.37718 (18)0.9207 (5)0.4632 (2)0.0657 (12)
C10.11199 (19)0.5850 (6)0.2586 (2)0.0547 (13)
C20.12931 (17)0.7048 (6)0.3092 (2)0.0480 (11)
C30.10198 (19)0.8496 (7)0.3000 (3)0.0610 (14)
H30.11350.92940.33360.073*
C40.0593 (2)0.8768 (8)0.2436 (3)0.0835 (19)
H40.04200.97460.23850.100*
C50.0417 (2)0.7597 (8)0.1943 (3)0.087 (2)
H50.01200.77670.15590.105*
C60.0679 (2)0.6173 (8)0.2014 (3)0.0718 (16)
H60.05580.53980.16690.086*
C70.17486 (18)0.6884 (5)0.3720 (2)0.0447 (11)
C80.26588 (18)0.4049 (5)0.4479 (2)0.0439 (11)
C90.31135 (18)0.3611 (6)0.5110 (2)0.0493 (11)
H9B0.31120.42170.55020.059*
H9A0.31090.24630.52080.059*
C100.40053 (19)0.3535 (6)0.5476 (3)0.0546 (12)
C110.4439 (2)0.4055 (8)0.5393 (3)0.0760 (17)
H110.44090.46890.50160.091*
C120.4915 (3)0.3640 (9)0.5867 (4)0.094 (2)
H120.52010.40190.58080.113*
C130.4971 (3)0.2704 (9)0.6407 (4)0.091 (2)
H130.52930.24210.67190.109*
C140.4558 (3)0.2182 (8)0.6493 (3)0.0812 (18)
H140.45980.15300.68690.097*
C150.4065 (2)0.2583 (7)0.6035 (3)0.0648 (14)
H150.37850.22100.61090.078*
C160.2155 (2)0.0391 (6)0.3074 (3)0.0657 (15)
H160.23270.03960.35480.079*
C170.2178 (3)0.0952 (7)0.2721 (3)0.0758 (17)
H170.23630.18500.29510.091*
C180.1931 (3)0.0984 (8)0.2031 (4)0.087 (2)
H180.19420.19020.17820.105*
C190.1673 (3)0.0321 (9)0.1715 (3)0.095 (2)
H190.15120.03340.12390.114*
C200.1642 (3)0.1681 (8)0.2097 (3)0.086 (2)
H200.14420.25600.18750.104*
C210.3443 (2)0.8379 (7)0.4809 (3)0.0626 (14)
H21A0.35710.75950.51490.075*
C220.4316 (3)0.8982 (10)0.4983 (4)0.109 (3)
H22A0.43830.82000.53430.163*
H22B0.44720.99960.51750.163*
H22C0.44530.86020.46620.163*
C230.3596 (3)1.0451 (7)0.4122 (3)0.0814 (18)
H23A0.36441.01110.37170.122*
H23B0.37851.14280.42960.122*
H23C0.32431.06500.40110.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0654 (4)0.0466 (4)0.0479 (4)0.0014 (3)0.0205 (3)0.0051 (3)
Ni20.0505 (5)0.0389 (4)0.0367 (4)0.0024 (4)0.0142 (4)0.0023 (4)
O10.062 (2)0.058 (2)0.053 (2)0.0038 (19)0.0064 (17)0.0095 (17)
O20.062 (2)0.0417 (17)0.0393 (16)0.0069 (16)0.0136 (15)0.0028 (14)
O30.064 (2)0.0437 (17)0.0460 (17)0.0045 (16)0.0189 (16)0.0048 (15)
O40.059 (2)0.067 (2)0.0518 (19)0.0059 (19)0.0218 (17)0.0145 (18)
O50.066 (2)0.057 (2)0.054 (2)0.0014 (19)0.0260 (18)0.0030 (17)
N10.048 (2)0.044 (2)0.0387 (19)0.0011 (18)0.0132 (17)0.0026 (17)
N20.056 (2)0.039 (2)0.0330 (18)0.0046 (19)0.0130 (17)0.0024 (16)
N30.072 (3)0.051 (2)0.052 (2)0.008 (2)0.030 (2)0.008 (2)
N40.062 (3)0.059 (3)0.084 (3)0.001 (2)0.037 (3)0.003 (2)
C10.055 (3)0.055 (3)0.049 (3)0.005 (3)0.014 (2)0.002 (2)
C20.043 (3)0.053 (3)0.045 (2)0.000 (2)0.014 (2)0.002 (2)
C30.052 (3)0.062 (3)0.059 (3)0.006 (3)0.011 (3)0.007 (3)
C40.068 (4)0.075 (4)0.084 (4)0.024 (3)0.004 (3)0.001 (4)
C50.065 (4)0.086 (5)0.076 (4)0.008 (4)0.011 (3)0.012 (4)
C60.058 (3)0.077 (4)0.061 (3)0.006 (3)0.002 (3)0.012 (3)
C70.054 (3)0.043 (2)0.041 (2)0.004 (2)0.022 (2)0.002 (2)
C80.053 (3)0.042 (2)0.040 (2)0.000 (2)0.021 (2)0.003 (2)
C90.063 (3)0.045 (3)0.042 (2)0.008 (2)0.023 (2)0.005 (2)
C100.055 (3)0.053 (3)0.058 (3)0.006 (3)0.023 (3)0.000 (3)
C110.062 (4)0.080 (4)0.090 (4)0.002 (3)0.035 (3)0.013 (4)
C120.061 (4)0.092 (5)0.127 (6)0.004 (4)0.034 (4)0.007 (5)
C130.069 (4)0.080 (5)0.103 (5)0.011 (4)0.011 (4)0.010 (4)
C140.074 (4)0.083 (4)0.073 (4)0.014 (4)0.013 (3)0.009 (3)
C150.055 (3)0.075 (4)0.061 (3)0.014 (3)0.020 (3)0.009 (3)
C160.085 (4)0.051 (3)0.066 (3)0.003 (3)0.035 (3)0.004 (3)
C170.102 (5)0.058 (3)0.082 (4)0.004 (3)0.051 (4)0.016 (3)
C180.111 (6)0.071 (4)0.096 (5)0.017 (4)0.059 (4)0.034 (4)
C190.125 (6)0.084 (5)0.072 (4)0.003 (5)0.033 (4)0.019 (4)
C200.122 (6)0.073 (4)0.056 (3)0.023 (4)0.026 (4)0.021 (3)
C210.075 (4)0.055 (3)0.063 (3)0.010 (3)0.032 (3)0.005 (3)
C220.078 (5)0.107 (6)0.147 (7)0.007 (4)0.051 (5)0.019 (5)
C230.105 (5)0.066 (4)0.088 (4)0.007 (4)0.054 (4)0.007 (3)
Geometric parameters (Å, º) top
Ni1—O11.820 (3)C5—H50.9300
Ni1—N11.841 (4)C6—H60.9300
Ni1—O31.858 (3)C8—C91.502 (6)
Ni1—N31.939 (4)C9—H9B0.9700
Ni2—O2i2.007 (3)C9—H9A0.9700
Ni2—O22.007 (3)C10—C151.374 (7)
Ni2—N22.047 (3)C10—C111.388 (7)
Ni2—N2i2.047 (3)C11—C121.384 (8)
Ni2—O52.147 (4)C11—H110.9300
Ni2—O5i2.147 (4)C12—C131.337 (9)
O1—C11.326 (6)C12—H120.9300
O2—C71.267 (5)C13—C141.336 (9)
O3—C81.292 (5)C13—H130.9300
O4—C101.359 (6)C14—C151.405 (7)
O4—C91.425 (6)C14—H140.9300
O5—C211.215 (6)C15—H150.9300
N1—C71.329 (5)C16—C171.353 (7)
N1—N21.411 (5)C16—H160.9300
N2—C81.289 (5)C17—C181.352 (8)
N3—C201.313 (6)C17—H170.9300
N3—C161.346 (6)C18—C191.330 (9)
N4—C211.332 (7)C18—H180.9300
N4—C231.431 (7)C19—C201.406 (8)
N4—C221.453 (7)C19—H190.9300
C1—C61.392 (7)C20—H200.9300
C1—C21.399 (6)C21—H21A0.9300
C2—C31.399 (7)C22—H22A0.9600
C2—C71.462 (6)C22—H22B0.9600
C3—C41.354 (7)C22—H22C0.9600
C3—H30.9300C23—H23A0.9600
C4—C51.366 (8)C23—H23B0.9600
C4—H40.9300C23—H23C0.9600
C5—C61.370 (8)
O1—Ni1—N194.27 (16)N1—C7—C2117.8 (4)
O1—Ni1—O3177.75 (15)N2—C8—O3123.0 (4)
N1—Ni1—O383.66 (15)N2—C8—C9120.1 (4)
O1—Ni1—N390.88 (17)O3—C8—C9116.9 (4)
N1—Ni1—N3174.67 (18)O4—C9—C8107.7 (4)
O3—Ni1—N391.21 (16)O4—C9—H9B110.2
O2i—Ni2—O2180.00 (17)C8—C9—H9B110.2
O2i—Ni2—N2100.61 (13)O4—C9—H9A110.2
O2—Ni2—N279.39 (13)C8—C9—H9A110.2
O2i—Ni2—N2i79.39 (13)H9B—C9—H9A108.5
O2—Ni2—N2i100.61 (13)O4—C10—C15125.6 (5)
N2—Ni2—N2i180.000 (1)O4—C10—C11116.5 (5)
O2i—Ni2—O589.95 (14)C15—C10—C11117.9 (5)
O2—Ni2—O590.05 (14)C12—C11—C10120.6 (6)
N2—Ni2—O591.43 (14)C12—C11—H11119.7
N2i—Ni2—O588.57 (14)C10—C11—H11119.7
O2i—Ni2—O5i90.05 (14)C13—C12—C11121.3 (7)
O2—Ni2—O5i89.95 (14)C13—C12—H12119.4
N2—Ni2—O5i88.57 (14)C11—C12—H12119.4
N2i—Ni2—O5i91.43 (14)C14—C13—C12119.0 (7)
O5—Ni2—O5i180.00 (13)C14—C13—H13120.5
C1—O1—Ni1126.9 (3)C12—C13—H13120.5
C7—O2—Ni2113.7 (3)C13—C14—C15122.3 (6)
C8—O3—Ni1110.7 (3)C13—C14—H14118.9
C10—O4—C9116.2 (4)C15—C14—H14118.9
C21—O5—Ni2121.8 (4)C10—C15—C14118.9 (6)
C7—N1—N2114.5 (4)C10—C15—H15120.5
C7—N1—Ni1131.9 (3)C14—C15—H15120.5
N2—N1—Ni1113.6 (3)N3—C16—C17122.4 (6)
C8—N2—N1109.1 (3)N3—C16—H16118.8
C8—N2—Ni2140.4 (3)C17—C16—H16118.8
N1—N2—Ni2110.5 (3)C18—C17—C16119.7 (6)
C20—N3—C16118.1 (5)C18—C17—H17120.1
C20—N3—Ni1120.8 (4)C16—C17—H17120.1
C16—N3—Ni1121.0 (3)C19—C18—C17118.8 (6)
C21—N4—C23120.1 (5)C19—C18—H18120.6
C21—N4—C22121.8 (5)C17—C18—H18120.6
C23—N4—C22117.9 (5)C18—C19—C20120.3 (6)
O1—C1—C6117.2 (5)C18—C19—H19119.9
O1—C1—C2125.3 (4)C20—C19—H19119.9
C6—C1—C2117.4 (5)N3—C20—C19120.6 (7)
C1—C2—C3119.0 (4)N3—C20—H20119.7
C1—C2—C7123.7 (4)C19—C20—H20119.7
C3—C2—C7117.2 (4)O5—C21—N4124.7 (5)
C4—C3—C2121.9 (5)O5—C21—H21A117.6
C4—C3—H3119.1N4—C21—H21A117.6
C2—C3—H3119.1N4—C22—H22A109.5
C3—C4—C5119.6 (6)N4—C22—H22B109.5
C3—C4—H4120.2H22A—C22—H22B109.5
C5—C4—H4120.2N4—C22—H22C109.5
C4—C5—C6120.0 (5)H22A—C22—H22C109.5
C4—C5—H5120.0H22B—C22—H22C109.5
C6—C5—H5120.0N4—C23—H23A109.5
C5—C6—C1122.2 (5)N4—C23—H23B109.5
C5—C6—H6118.9H23A—C23—H23B109.5
C1—C6—H6118.9N4—C23—H23C109.5
O2—C7—N1121.7 (4)H23A—C23—H23C109.5
O2—C7—C2120.5 (4)H23B—C23—H23C109.5
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.932.412.749 (5)101
C16—H16···O30.932.312.800 (6)113
C20—H20···O10.932.282.783 (8)114
C23—H23C···O50.962.342.752 (9)105
C9—H9B···O2i0.972.383.183 (6)139
C21—H21A···O2i0.932.402.968 (8)119
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni3(C15H12N2O4)2(C5H5N)2(C3H6NO)2]
Mr1046.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)28.646 (6), 8.2490 (16), 21.176 (4)
β (°) 112.98 (3)
V3)4606.8 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.21 × 0.18 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21350, 5266, 3189
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.129, 1.00
No. of reflections5266
No. of parameters306
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.65

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1993), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.932.412.749 (5)101.1
C16—H16···O30.932.312.800 (6)112.7
C20—H20···O10.932.282.783 (8)113.7
C23—H23C···O50.962.342.752 (9)105.0
C9—H9B···O2i0.972.383.183 (6)139.2
C21—H21A···O2i0.932.402.968 (8)118.9
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds