Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mononuclear copper(II) complex, [Cu(C12H16N3O3)(NCS)(C2H3N)], the CuII atom is five-coordinated in a square-pyramidal geometry, with one O and two N atoms of the Schiff-base ligand and one N atom of the thio­cyanate ligand defining the basal plane. The apical position is occupied by the N atom of the acetonitrile mol­ecule. The structure is stabilized by intramolecular C—H...N and intermolecular C—H...O hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025342/rz2144sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025342/rz2144Isup2.hkl
Contains datablock I

CCDC reference: 654721

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.037
  • wR factor = 0.098
  • Data-to-parameter ratio = 18.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N3 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N5 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C13 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.19
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Recently, we have reported a thiocyanate coordinated zinc(II) complex (Ye & You, 2007). As an extension of the work on the crystal structures of such complexes, we report herein the crystal structure of the title compound, (I).

The CuII atom in (I) is five-coordinated in a square-pyramidal geometry, with one O and two N atoms of the Schiff base ligand and one N atom of the thiocyanate ligand defining the basal plane, and the N atom of the acetonitrile group occupying the apical position (Fig. 1). Selected bond distances and angles within the coordination sphere of the metal are given in Table 1. The molecular and crystal structures are stabilized by C—H···N and C—H···O hydrogen bonds (Table 2).

Related literature top

For related literature, see: Ye & You (2007); Hu et al. (2005).

Experimental top

5-Nitrosalicylaldehyde (0.1 mmol, 16.5 mg), N,N-dimethylpropane-1,3-diamine (0.1 mmol, 10.2 mg), ammonium thiocyanate (0.1 mmol, 7.6 mg), and copper acetate monohydrate (0.1 mmol, 20.0 mg) were dissolved in an acetonitrile solution (10 ml). The mixture was stirred at room temperature for 10 min, giving a clear blue solution. Crystals of the title compound were formed by slow evaporation of the solvent over a week at room temperature.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Recently, we have reported a thiocyanate coordinated zinc(II) complex (Ye & You, 2007). As an extension of the work on the crystal structures of such complexes, we report herein the crystal structure of the title compound, (I).

The CuII atom in (I) is five-coordinated in a square-pyramidal geometry, with one O and two N atoms of the Schiff base ligand and one N atom of the thiocyanate ligand defining the basal plane, and the N atom of the acetonitrile group occupying the apical position (Fig. 1). Selected bond distances and angles within the coordination sphere of the metal are given in Table 1. The molecular and crystal structures are stabilized by C—H···N and C—H···O hydrogen bonds (Table 2).

For related literature, see: Ye & You (2007); Hu et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, shown with 30% probability displacement ellipsoids.
Acetonitrile{2-[3-(dimethylamino)propyliminomethyl]-4-nitrophenolato- κ3N,N',O}(thiocyanato-κN)copper(II) top
Crystal data top
[Cu(C12H16N3O3)(NCS)(C2H3N)]F(000) = 852
Mr = 412.95Dx = 1.487 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3875 reflections
a = 12.507 (2) Åθ = 2.3–24.5°
b = 11.552 (1) ŵ = 1.32 mm1
c = 12.787 (2) ÅT = 298 K
β = 93.543 (1)°Block, blue
V = 1844.0 (4) Å30.23 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4186 independent reflections
Radiation source: fine-focus sealed tube3143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1516
Tmin = 0.745, Tmax = 0.770k = 1414
15401 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.3686P]
where P = (Fo2 + 2Fc2)/3
4186 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cu(C12H16N3O3)(NCS)(C2H3N)]V = 1844.0 (4) Å3
Mr = 412.95Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.507 (2) ŵ = 1.32 mm1
b = 11.552 (1) ÅT = 298 K
c = 12.787 (2) Å0.23 × 0.21 × 0.20 mm
β = 93.543 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4186 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3143 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.770Rint = 0.035
15401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
4186 reflectionsΔρmin = 0.25 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.21596 (2)0.93882 (2)0.25457 (2)0.04336 (11)
S10.26057 (7)0.83713 (8)0.09663 (6)0.0811 (3)
O10.36548 (13)0.89111 (16)0.27255 (15)0.0596 (5)
O20.68408 (15)1.2638 (2)0.4508 (2)0.0856 (7)
O30.79311 (14)1.1489 (2)0.38151 (18)0.0819 (7)
N10.23620 (14)1.03387 (16)0.38324 (14)0.0414 (4)
N20.06710 (15)1.01357 (17)0.21204 (15)0.0452 (5)
N30.14008 (19)0.7828 (2)0.3335 (2)0.0679 (6)
N40.22514 (18)0.8813 (2)0.11039 (18)0.0656 (6)
N50.70235 (15)1.1749 (2)0.40349 (17)0.0544 (5)
C10.42878 (17)1.05305 (18)0.37335 (17)0.0387 (5)
C20.44268 (19)0.95528 (19)0.30748 (19)0.0448 (5)
C30.5498 (2)0.9310 (2)0.2819 (2)0.0561 (7)
H30.56300.86500.24310.067*
C40.63293 (19)1.0008 (2)0.31240 (19)0.0537 (6)
H40.70160.98380.29290.064*
C50.61515 (17)1.0982 (2)0.37302 (18)0.0437 (5)
C60.51490 (17)1.1218 (2)0.40523 (17)0.0414 (5)
H60.50491.18470.44900.050*
C70.32677 (18)1.07729 (19)0.41476 (18)0.0408 (5)
H70.32661.12970.46990.049*
C80.14448 (19)1.0635 (2)0.44447 (19)0.0508 (6)
H8A0.16901.11130.50350.061*
H8B0.11460.99300.47190.061*
C90.05886 (19)1.1266 (2)0.3807 (2)0.0532 (6)
H9A0.09081.19180.34630.064*
H9B0.00721.15700.42710.064*
C100.00110 (19)1.0514 (2)0.2987 (2)0.0545 (6)
H10A0.02550.98310.33280.065*
H10B0.06041.09370.26870.065*
C110.0905 (2)1.1145 (2)0.1461 (2)0.0619 (7)
H11A0.02471.15220.12340.093*
H11B0.12651.08900.08600.093*
H11C0.13561.16780.18600.093*
C120.0019 (2)0.9324 (2)0.1481 (2)0.0624 (7)
H12A0.01360.86360.18790.094*
H12B0.03280.91240.08560.094*
H12C0.06940.96870.12940.094*
C130.24112 (19)0.8638 (2)0.0250 (2)0.0520 (6)
C140.1136 (2)0.7100 (2)0.3835 (2)0.0528 (6)
C150.0798 (2)0.6164 (3)0.4485 (2)0.0713 (8)
H15A0.12410.61450.51250.107*
H15B0.08620.54440.41200.107*
H15C0.00650.62810.46410.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04219 (18)0.04213 (18)0.04608 (18)0.00245 (12)0.00523 (12)0.00212 (12)
S10.1006 (6)0.0958 (6)0.0481 (4)0.0151 (5)0.0143 (4)0.0046 (4)
O10.0443 (10)0.0475 (10)0.0868 (13)0.0035 (8)0.0027 (9)0.0201 (9)
O20.0455 (11)0.0814 (15)0.128 (2)0.0016 (10)0.0067 (11)0.0378 (14)
O30.0350 (10)0.1144 (18)0.0968 (16)0.0000 (11)0.0085 (10)0.0257 (14)
N10.0392 (10)0.0449 (11)0.0406 (10)0.0004 (8)0.0073 (8)0.0032 (8)
N20.0432 (11)0.0459 (11)0.0465 (11)0.0023 (9)0.0029 (9)0.0004 (9)
N30.0707 (15)0.0561 (14)0.0764 (16)0.0128 (12)0.0011 (12)0.0113 (13)
N40.0653 (15)0.0780 (16)0.0540 (14)0.0053 (13)0.0064 (11)0.0135 (12)
N50.0352 (11)0.0694 (15)0.0578 (13)0.0048 (10)0.0037 (9)0.0001 (11)
C10.0388 (12)0.0389 (12)0.0383 (11)0.0053 (9)0.0010 (9)0.0066 (9)
C20.0447 (13)0.0403 (13)0.0493 (13)0.0073 (10)0.0010 (10)0.0019 (10)
C30.0479 (14)0.0573 (16)0.0632 (17)0.0129 (12)0.0046 (12)0.0134 (13)
C40.0382 (13)0.0689 (17)0.0543 (15)0.0120 (12)0.0053 (11)0.0003 (13)
C50.0350 (12)0.0511 (13)0.0446 (13)0.0048 (10)0.0016 (10)0.0060 (11)
C60.0385 (12)0.0442 (13)0.0410 (12)0.0080 (10)0.0009 (9)0.0018 (10)
C70.0413 (12)0.0425 (13)0.0386 (12)0.0038 (10)0.0026 (9)0.0014 (9)
C80.0416 (13)0.0644 (16)0.0475 (13)0.0065 (12)0.0121 (11)0.0042 (12)
C90.0407 (13)0.0600 (16)0.0603 (15)0.0010 (12)0.0144 (11)0.0095 (13)
C100.0370 (12)0.0663 (17)0.0607 (16)0.0002 (11)0.0069 (11)0.0048 (13)
C110.0709 (18)0.0526 (16)0.0627 (17)0.0043 (14)0.0085 (14)0.0101 (13)
C120.0526 (15)0.0692 (18)0.0637 (17)0.0074 (13)0.0101 (13)0.0108 (14)
C130.0489 (14)0.0508 (15)0.0563 (16)0.0029 (11)0.0036 (12)0.0008 (12)
C140.0508 (14)0.0462 (14)0.0613 (16)0.0044 (12)0.0015 (12)0.0010 (13)
C150.079 (2)0.0554 (17)0.080 (2)0.0118 (16)0.0143 (16)0.0121 (15)
Geometric parameters (Å, º) top
Cu1—O11.950 (2)C4—C51.391 (4)
Cu1—N41.970 (2)C4—H40.9300
Cu1—N11.981 (2)C5—C61.371 (3)
Cu1—N22.093 (2)C6—H60.9300
Cu1—N32.299 (2)C7—H70.9300
S1—C131.618 (3)C8—C91.495 (3)
O1—C21.276 (3)C8—H8A0.9700
O2—N51.220 (3)C8—H8B0.9700
O3—N51.224 (3)C9—C101.511 (3)
N1—C71.281 (3)C9—H9A0.9700
N1—C81.469 (3)C9—H9B0.9700
N2—C111.479 (3)C10—H10A0.9700
N2—C121.485 (3)C10—H10B0.9700
N2—C101.487 (3)C11—H11A0.9600
N3—C141.119 (3)C11—H11B0.9600
N4—C131.140 (3)C11—H11C0.9600
N5—C51.441 (3)C12—H12A0.9600
C1—C61.379 (3)C12—H12B0.9600
C1—C21.426 (3)C12—H12C0.9600
C1—C71.439 (3)C14—C151.443 (4)
C2—C31.427 (3)C15—H15A0.9600
C3—C41.354 (4)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
O1—Cu1—N484.49 (9)C1—C6—H6119.7
O1—Cu1—N189.22 (7)N1—C7—C1126.5 (2)
N4—Cu1—N1162.26 (9)N1—C7—H7116.7
O1—Cu1—N2168.09 (8)C1—C7—H7116.7
N4—Cu1—N289.91 (9)N1—C8—C9112.3 (2)
N1—Cu1—N293.04 (7)N1—C8—H8A109.1
O1—Cu1—N398.37 (8)C9—C8—H8A109.1
N4—Cu1—N3101.30 (10)N1—C8—H8B109.1
N1—Cu1—N396.01 (8)C9—C8—H8B109.1
N2—Cu1—N393.03 (8)H8A—C8—H8B107.9
C2—O1—Cu1125.21 (15)C8—C9—C10113.2 (2)
C7—N1—C8116.47 (19)C8—C9—H9A108.9
C7—N1—Cu1122.92 (15)C10—C9—H9A108.9
C8—N1—Cu1120.52 (15)C8—C9—H9B108.9
C11—N2—C12108.2 (2)C10—C9—H9B108.9
C11—N2—C10109.4 (2)H9A—C9—H9B107.8
C12—N2—C10105.38 (19)N2—C10—C9115.0 (2)
C11—N2—Cu1105.60 (15)N2—C10—H10A108.5
C12—N2—Cu1111.08 (16)C9—C10—H10A108.5
C10—N2—Cu1116.96 (15)N2—C10—H10B108.5
C14—N3—Cu1170.0 (2)C9—C10—H10B108.5
C13—N4—Cu1168.5 (3)H10A—C10—H10B107.5
O2—N5—O3121.7 (2)N2—C11—H11A109.5
O2—N5—C5119.4 (2)N2—C11—H11B109.5
O3—N5—C5118.9 (2)H11A—C11—H11B109.5
C6—C1—C2120.6 (2)N2—C11—H11C109.5
C6—C1—C7118.2 (2)H11A—C11—H11C109.5
C2—C1—C7121.0 (2)H11B—C11—H11C109.5
O1—C2—C1123.3 (2)N2—C12—H12A109.5
O1—C2—C3120.4 (2)N2—C12—H12B109.5
C1—C2—C3116.2 (2)H12A—C12—H12B109.5
C4—C3—C2122.1 (2)N2—C12—H12C109.5
C4—C3—H3118.9H12A—C12—H12C109.5
C2—C3—H3118.9H12B—C12—H12C109.5
C3—C4—C5119.7 (2)N4—C13—S1178.4 (3)
C3—C4—H4120.1N3—C14—C15179.7 (3)
C5—C4—H4120.1C14—C15—H15A109.5
C6—C5—C4120.6 (2)C14—C15—H15B109.5
C6—C5—N5119.2 (2)H15A—C15—H15B109.5
C4—C5—N5120.2 (2)C14—C15—H15C109.5
C5—C6—C1120.6 (2)H15A—C15—H15C109.5
C5—C6—H6119.7H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···N40.962.432.969 (3)115
C10—H10B···O3i0.972.483.082 (3)120
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C12H16N3O3)(NCS)(C2H3N)]
Mr412.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.507 (2), 11.552 (1), 12.787 (2)
β (°) 93.543 (1)
V3)1844.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.745, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
15401, 4186, 3143
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.02
No. of reflections4186
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O11.950 (2)Cu1—N22.093 (2)
Cu1—N41.970 (2)Cu1—N32.299 (2)
Cu1—N11.981 (2)
O1—Cu1—N484.49 (9)N1—Cu1—N293.04 (7)
O1—Cu1—N189.22 (7)O1—Cu1—N398.37 (8)
N4—Cu1—N1162.26 (9)N4—Cu1—N3101.30 (10)
O1—Cu1—N2168.09 (8)N1—Cu1—N396.01 (8)
N4—Cu1—N289.91 (9)N2—Cu1—N393.03 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···N40.962.432.969 (3)114.9
C10—H10B···O3i0.972.483.082 (3)119.7
Symmetry code: (i) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds