Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The absolute structures of R-(-)-2-methylpiperazine (rmpip), S-(+)-2-methylpiperazine (smpip), R-(-)-2-methylpiperazinediium dibromide (rmpipBr) and S-(+)-2-methylpiperazinediium dibromide (smpipBr) have been determined by anomalous dispersion employing the Parsons' Q and Hooft methods. The studies were undertaken to determine the limitations of the absolute structure determination of light element structures (C, H, N) employing routine single-crystal X-ray diffraction laboratory conditions. The structures of the neutral methylpiperazines were known from a priori non-crystallographic methods and were confirmed by the absolute structure determination of their dibromide salts. By employing the full data collection of Bijvoet pairs and minimizing systematic errors, the absolute structure parameters 0.09 (8) (Hooft) for R-(-)-2-methylpiperazine and 0.05 (8) (Hooft) for S-(+)-2-methylpiperazine were determined.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213008713/ry5050sup1.cif
Contains datablocks rmpip, smpip, rmpipbr, smpipbr

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213008713/ry5050smpipsup2.hkl
Contains datablock smpip

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213008713/ry5050rmpipsup3.hkl
Contains datablock mpip

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213008713/ry5050rmpipbrsup4.hkl
Contains datablock rmpipbr

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213008713/ry5050smpipbrsup5.hkl
Contains datablock smpipbr

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052519213008713/ry5050sup6.pdf
Scatterplots

CCDC references: 950483; 950484; 950485; 950486

Computing details top

For all compounds, data collection: FRAMBO (Bruker, 2002); cell refinement: FRAMBO (Bruker, 2002); data reduction: SAINT (Bruker, 2012b); program(s) used to solve structure: SHELXS (Sheldrick 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012); molecular graphics: OLEX-2 (Dolomanov, 2009); software used to prepare material for publication: Ciftab (Sheldrick, 2008).

(rmpip) R-(-)-2-methylpiperazine top
Crystal data top
C5H12N2Dx = 1.084 Mg m3
Mr = 100.17Melting point: 363 K
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 5.2130 (4) ÅCell parameters from 4190 reflections
b = 8.4710 (7) Åθ = 6.4–63.7°
c = 7.2048 (6) ŵ = 0.52 mm1
β = 105.362 (6)°T = 110 K
V = 306.79 (4) Å3Plate, colorless
Z = 20.16 × 0.13 × 0.04 mm
F(000) = 112
Data collection top
MWPC area detector
diffractometer
929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 63.6°, θmin = 8.3°
Absorption correction: multi-scan
SADABS-2009/1 (Bruker,2009) was employed for absorption correction. wR2(int) was 0.0000 before and 0.0000 after correction. The ratio of minimum to maximum transmission factors was -1.#IND. Additional spherical absorption correction applied with mu*r = 0.0000. The λ/2 correction was not applied
h = 66
Tmin = 0.611, Tmax = 0.752k = 99
5807 measured reflectionsl = 88
987 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.078P)2 + 0.0239P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.15 e Å3
987 reflectionsΔρmin = 0.17 e Å3
71 parametersAbsolute structure: Hooft y determined using 450 Bijvoet Pairs (Hooft,Straver,& Spek,(2008). J.Appl.Cryst. 41, 96-103) PLATON (2012,161012) Bijvoet Pairs=450, Coverage=0.97, Bayesian Statistics=Student_T(Nu=10.0), P2(true)=1.000, P3(true)=1.000, P3(rac-twin)=0.8E-05, P3(false)=0.2E-25, G =0.824, G (su)=0.167
1 restraintAbsolute structure parameter: 0.09 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1053 (4)0.65182 (18)0.4789 (2)0.0271 (5)
H10.045 (6)0.605 (4)0.473 (4)0.041*
N40.3949 (4)0.93684 (18)0.5173 (3)0.0304 (5)
H40.550 (6)0.985 (4)0.519 (4)0.046*
C20.0542 (4)0.7647 (3)0.3190 (3)0.0279 (6)
H2A0.08800.83990.33190.033*
C30.3098 (4)0.8566 (2)0.3313 (3)0.0303 (6)
H3A0.45100.78340.31620.036*
H3B0.27900.93530.22600.036*
C50.4444 (4)0.8224 (3)0.6753 (3)0.0312 (6)
H5A0.50220.87800.80030.037*
H5B0.58750.74870.66500.037*
C60.1908 (4)0.7316 (3)0.6642 (3)0.0298 (6)
H6A0.22190.65290.76950.036*
H6B0.05000.80500.67960.036*
C70.0389 (5)0.6767 (3)0.1303 (3)0.0383 (6)
H7A0.20300.61920.12760.057*
H7B0.09880.60190.11770.057*
H7C0.07290.75220.02340.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0273 (10)0.0171 (10)0.0377 (11)0.0026 (8)0.0100 (8)0.0006 (8)
N40.0293 (10)0.0178 (11)0.0448 (11)0.0011 (8)0.0108 (8)0.0019 (9)
C20.0283 (11)0.0203 (12)0.0361 (14)0.0026 (9)0.0102 (10)0.0015 (9)
C30.0312 (12)0.0221 (14)0.0392 (12)0.0015 (10)0.0122 (10)0.0043 (9)
C50.0311 (11)0.0229 (13)0.0386 (14)0.0007 (9)0.0076 (11)0.0003 (10)
C60.0341 (12)0.0222 (13)0.0346 (13)0.0000 (10)0.0118 (9)0.0025 (10)
C70.0412 (12)0.0333 (12)0.0385 (12)0.0018 (11)0.0074 (9)0.0017 (11)
Geometric parameters (Å, º) top
N1—C61.457 (3)C3—H3B0.9900
N1—C21.466 (3)C5—C61.514 (3)
N1—H10.87 (3)C5—H5A0.9900
N4—C31.463 (3)C5—H5B0.9900
N4—C51.465 (3)C6—H6A0.9900
N4—H40.90 (3)C6—H6B0.9900
C2—C71.513 (3)C7—H7A0.9800
C2—C31.526 (3)C7—H7B0.9800
C2—H2A1.0000C7—H7C0.9800
C3—H3A0.9900
C6—N1—C2111.43 (16)N4—C5—C6108.90 (19)
C6—N1—H1108.0 (19)N4—C5—H5A109.9
C2—N1—H1106.5 (19)C6—C5—H5A109.9
C3—N4—C5110.65 (17)N4—C5—H5B109.9
C3—N4—H4105.8 (18)C6—C5—H5B109.9
C5—N4—H4108.5 (18)H5A—C5—H5B108.3
N1—C2—C7109.46 (18)N1—C6—C5109.54 (17)
N1—C2—C3108.26 (17)N1—C6—H6A109.8
C7—C2—C3111.75 (16)C5—C6—H6A109.8
N1—C2—H2A109.1N1—C6—H6B109.8
C7—C2—H2A109.1C5—C6—H6B109.8
C3—C2—H2A109.1H6A—C6—H6B108.2
N4—C3—C2109.78 (17)C2—C7—H7A109.5
N4—C3—H3A109.7C2—C7—H7B109.5
C2—C3—H3A109.7H7A—C7—H7B109.5
N4—C3—H3B109.7C2—C7—H7C109.5
C2—C3—H3B109.7H7A—C7—H7C109.5
H3A—C3—H3B108.2H7B—C7—H7C109.5
C6—N1—C2—C7178.90 (17)C7—C2—C3—N4178.83 (16)
C6—N1—C2—C359.1 (2)C3—N4—C5—C659.7 (2)
C5—N4—C3—C260.0 (2)C2—N1—C6—C560.0 (2)
N1—C2—C3—N458.2 (2)N4—C5—C6—N158.8 (2)
(smpip) S-(+)-2-methylpiperazine top
Crystal data top
C5H12N2Dx = 1.084 Mg m3
Mr = 100.17Melting point: 363 K
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 5.2090 (4) ÅCell parameters from 3197 reflections
b = 8.4798 (6) Åθ = 6.4–63.6°
c = 7.2037 (5) ŵ = 0.52 mm1
β = 105.254 (5)°T = 110 K
V = 306.99 (4) Å3Plate, colorless
Z = 20.12 × 0.11 × 0.04 mm
F(000) = 112
Data collection top
MWPC area detector
diffractometer
902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 63.7°, θmin = 8.3°
Absorption correction: multi-scan
SADABS-2009/1 (Bruker,2009) was employed for absorption correction. wR2(int) was 0.0000 before and 0.0000 after correction. The ratio of minimum to maximum transmission factors was -1.#IND. Additional spherical absorption correction applied with mu*r = 0.0000. The λ/2 correction was not applied
h = 55
Tmin = 0.649, Tmax = 0.752k = 98
6541 measured reflectionsl = 88
965 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max < 0.001
wR(F2) = 0.115Δρmax = 0.18 e Å3
S = 1.03Δρmin = 0.21 e Å3
965 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
72 parametersExtinction coefficient: 0.118 (19)
1 restraintAbsolute structure: Hooft y determined using 430 Bijvoet Pairs (Hooft,Straver,& Spek,(2008). J.Appl.Cryst. 41, 96-103) PLATON (2012,161012) Bijvoet Pairs=430, Coverage=0.92, Bayesian Statistics=Student_T (Nu=5.0), P2(true)=1.000, P3(true)=1.0000, P3(rac-twin)=0.2E-07, P3(false)=0.2E-32, G= 0.9029, G (su)=0.1504
Hydrogen site location: mixedAbsolute structure parameter: 0.05 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1048 (4)0.64441 (18)0.4788 (2)0.0212 (6)
H10.043 (6)0.591 (4)0.472 (4)0.032*
N40.3949 (4)0.92944 (19)0.5176 (2)0.0241 (6)
H40.549 (6)0.980 (4)0.517 (4)0.036*
C20.0543 (4)0.7573 (3)0.3192 (3)0.0221 (7)
H2B0.08800.83240.33230.027*
C30.3098 (4)0.8492 (2)0.3314 (3)0.0236 (7)
H3A0.27920.92780.22620.028*
H3B0.45120.77620.31630.028*
C50.4444 (4)0.8152 (3)0.6755 (3)0.0241 (7)
H5A0.58770.74170.66520.029*
H5B0.50170.87070.80040.029*
C60.1910 (4)0.7243 (3)0.6644 (3)0.0236 (7)
H6A0.05010.79750.68010.028*
H6B0.22220.64570.76960.028*
C70.0394 (4)0.6695 (3)0.1302 (3)0.0318 (6)
H7B0.20240.61120.12840.048*
H7C0.07530.74510.02350.048*
H7D0.09900.59550.11660.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0174 (10)0.0192 (12)0.0273 (11)0.0027 (7)0.0064 (7)0.0006 (8)
N40.0188 (10)0.0181 (12)0.0356 (11)0.0015 (7)0.0074 (7)0.0011 (8)
C20.0187 (11)0.0226 (14)0.0262 (13)0.0025 (8)0.0080 (9)0.0013 (9)
C30.0203 (11)0.0218 (15)0.0298 (12)0.0014 (9)0.0085 (9)0.0044 (9)
C50.0195 (11)0.0217 (14)0.0298 (12)0.0008 (8)0.0040 (9)0.0003 (9)
C60.0231 (11)0.0233 (14)0.0254 (12)0.0001 (9)0.0081 (9)0.0008 (9)
C70.0301 (11)0.0363 (13)0.0267 (11)0.0013 (10)0.0036 (8)0.0019 (10)
Geometric parameters (Å, º) top
N1—C61.460 (3)C3—H3B0.9900
N1—C21.466 (3)C5—C61.512 (3)
N1—H10.88 (3)C5—H5A0.9900
N4—C51.464 (3)C5—H5B0.9900
N4—C31.465 (3)C6—H6A0.9900
N4—H40.91 (3)C6—H6B0.9900
C2—C71.515 (3)C7—H7B0.9800
C2—C31.525 (3)C7—H7C0.9800
C2—H2B1.0000C7—H7D0.9800
C3—H3A0.9900
C6—N1—C2111.34 (16)N4—C5—C6108.86 (18)
C6—N1—H1109.9 (18)N4—C5—H5A109.9
C2—N1—H1108.5 (18)C6—C5—H5A109.9
C5—N4—C3110.65 (16)N4—C5—H5B109.9
C5—N4—H4110.1 (17)C6—C5—H5B109.9
C3—N4—H4105.4 (17)H5A—C5—H5B108.3
N1—C2—C7109.44 (18)N1—C6—C5109.78 (16)
N1—C2—C3108.33 (16)N1—C6—H6A109.7
C7—C2—C3111.90 (15)C5—C6—H6A109.7
N1—C2—H2B109.0N1—C6—H6B109.7
C7—C2—H2B109.0C5—C6—H6B109.7
C3—C2—H2B109.0H6A—C6—H6B108.2
N4—C3—C2109.84 (15)C2—C7—H7B109.5
N4—C3—H3A109.7C2—C7—H7C109.5
C2—C3—H3A109.7H7B—C7—H7C109.5
N4—C3—H3B109.7C2—C7—H7D109.5
C2—C3—H3B109.7H7B—C7—H7D109.5
H3A—C3—H3B108.2H7C—C7—H7D109.5
C6—N1—C2—C7178.94 (15)C7—C2—C3—N4178.95 (17)
C6—N1—C2—C358.81 (19)C3—N4—C5—C659.6 (2)
C5—N4—C3—C260.0 (2)C2—N1—C6—C559.8 (2)
N1—C2—C3—N458.2 (2)N4—C5—C6—N158.7 (2)
(rmpipbr) R-(-)-2-methylpiperazinediium dibromide top
Crystal data top
C5H14.71Br2N2O0.36F(000) = 263
Mr = 268.40Dx = 1.869 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 6.0418 (3) ÅCell parameters from 8198 reflections
b = 11.5649 (5) Åθ = 7.5–63.9°
c = 7.1333 (3) ŵ = 10.28 mm1
β = 106.911 (2)°T = 110 K
V = 476.87 (4) Å3Plate, colorless
Z = 20.21 × 0.11 × 0.04 mm
Data collection top
MWPC area detector
diffractometer
1517 reflections with I > 2σ(I)
phi and ω scansRint = 0.034
Absorption correction: multi-scan
SADABS-2009/1 (Bruker,2009) was employed for absorption correction. wR2(int) was 0.1305 before and 0.0486 after correction. The ratio of minimum to maximum transmission factors was 0.5252. Additional spherical absorption correction applied with mu*r = 0.6000. The λ/2 correction factor of 0.0015 was applied.
θmax = 63.9°, θmin = 6.5°
Tmin = 0.244, Tmax = 0.464h = 66
10680 measured reflectionsk = 1313
1537 independent reflectionsl = 88
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.050P)2 + 0.0247P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.060Δρmax = 0.51 e Å3
S = 1.03Δρmin = 0.64 e Å3
1537 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
96 parametersExtinction coefficient: 0.0158 (10)
1 restraintAbsolute structure: Flack x determined using 697 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
Hydrogen site location: mixedAbsolute structure parameter: 0.041 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.28253 (9)0.12496 (5)0.11627 (8)0.0145 (2)
Br20.89365 (10)0.06055 (4)0.57535 (8)0.0233 (2)
O1W0.835 (2)0.2119 (11)0.619 (2)0.029 (4)0.350 (12)
H1W0.85010.13890.60720.03 (5)*0.350 (12)
H2W0.90670.27250.56710.02 (7)*0.350 (12)
N10.7332 (7)0.0748 (4)0.0416 (7)0.0131 (9)
H1A0.87630.08660.04670.016*
H1B0.62340.08690.02250.016*
C20.6980 (9)0.1601 (4)0.2052 (8)0.0147 (12)
H20.82140.14890.27130.018*
C30.4633 (9)0.1386 (4)0.3525 (8)0.0119 (11)
H3A0.33990.15450.29020.014*
H3B0.44200.19210.46470.014*
C50.4830 (9)0.0680 (5)0.2591 (8)0.0159 (11)
H5A0.47670.14800.30970.019*
H5B0.36000.05930.19390.019*
N40.4427 (8)0.0156 (3)0.4254 (7)0.0141 (10)
H4A0.29750.00400.51040.017*
H4B0.54910.00270.49270.017*
C60.7172 (9)0.0463 (6)0.1122 (7)0.0133 (15)
H6A0.73940.09980.00010.016*
H6B0.84100.06140.17450.016*
C70.7118 (12)0.2822 (6)0.1271 (10)0.0197 (17)
H7A0.71130.33690.23220.030*
H7B0.85480.29160.01960.030*
H7C0.57840.29740.07890.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0113 (3)0.0192 (3)0.0135 (3)0.0008 (2)0.0044 (2)0.0016 (2)
Br20.0182 (4)0.0382 (4)0.0150 (4)0.0085 (2)0.0071 (2)0.0052 (2)
O1W0.027 (7)0.022 (7)0.040 (8)0.001 (5)0.012 (6)0.007 (6)
N10.010 (2)0.0177 (19)0.012 (2)0.0005 (17)0.0047 (18)0.0018 (19)
C20.013 (3)0.017 (3)0.016 (3)0.0011 (19)0.007 (2)0.003 (2)
C30.016 (2)0.007 (2)0.011 (3)0.003 (2)0.002 (2)0.002 (2)
C50.021 (3)0.012 (2)0.017 (3)0.005 (2)0.009 (2)0.002 (2)
N40.021 (2)0.012 (2)0.008 (2)0.0012 (17)0.0034 (19)0.0022 (17)
C60.016 (4)0.013 (3)0.010 (3)0.001 (2)0.003 (2)0.004 (2)
C70.023 (4)0.016 (3)0.019 (4)0.0047 (19)0.005 (3)0.007 (2)
Geometric parameters (Å, º) top
O1W—H1W0.8500C5—N41.494 (7)
O1W—H2W0.8500C5—C61.517 (7)
N1—C61.482 (8)C5—H5A0.9900
N1—C21.495 (7)C5—H5B0.9900
N1—H1A0.9200N4—H4A0.9200
N1—H1B0.9200N4—H4B0.9200
C2—C71.512 (9)C6—H6A0.9900
C2—C31.520 (7)C6—H6B0.9900
C2—H21.0000C7—H7A0.9800
C3—N41.507 (7)C7—H7B0.9800
C3—H3A0.9900C7—H7C0.9800
C3—H3B0.9900
H1W—O1W—H2W138.5N4—C5—H5B109.6
C6—N1—C2112.2 (4)C6—C5—H5B109.6
C6—N1—H1A109.2H5A—C5—H5B108.1
C2—N1—H1A109.2C5—N4—C3111.0 (4)
C6—N1—H1B109.2C5—N4—H4A109.4
C2—N1—H1B109.2C3—N4—H4A109.4
H1A—N1—H1B107.9C5—N4—H4B109.4
N1—C2—C7110.4 (5)C3—N4—H4B109.4
N1—C2—C3108.9 (4)H4A—N4—H4B108.0
C7—C2—C3110.4 (5)N1—C6—C5110.3 (4)
N1—C2—H2109.0N1—C6—H6A109.6
C7—C2—H2109.0C5—C6—H6A109.6
C3—C2—H2109.0N1—C6—H6B109.6
N4—C3—C2111.1 (4)C5—C6—H6B109.6
N4—C3—H3A109.4H6A—C6—H6B108.1
C2—C3—H3A109.4C2—C7—H7A109.5
N4—C3—H3B109.4C2—C7—H7B109.5
C2—C3—H3B109.4H7A—C7—H7B109.5
H3A—C3—H3B108.0C2—C7—H7C109.5
N4—C5—C6110.2 (4)H7A—C7—H7C109.5
N4—C5—H5A109.6H7B—C7—H7C109.5
C6—C5—H5A109.6
(smpipbr) S-(+)-2-methylpiperazinediium dibromide top
Crystal data top
2(Br)·0.25(H2O)·C5H14N2F(000) = 261
Mr = 266.51Dx = 1.862 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 6.0262 (3) ÅCell parameters from 7786 reflections
b = 11.5550 (6) Åθ = 3.8–63.6°
c = 7.1392 (4) ŵ = 10.30 mm1
β = 107.018 (3)°T = 110 K
V = 475.35 (4) Å3Plate, colorless
Z = 20.20 × 0.10 × 0.01 mm
Data collection top
MWPC area detector
diffractometer
1499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
phi and ω scansθmax = 63.7°, θmin = 6.5°
Absorption correction: multi-scan
SADABS-2009/1 (Bruker,2009) was employed for absorption correction. wR2(int) was 0.0000 before and 0.0000 after correction. The ratio of minimum to maximum transmission factors was -1.#IND. Additional spherical absorption correction applied with mu*r = 0.0000. The λ/2 correction was not applied
h = 66
Tmin = 0.383, Tmax = 0.752k = 1313
8987 measured reflectionsl = 67
1507 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.032P)2 + 0.1521P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.37 e Å3
1507 reflectionsΔρmin = 0.60 e Å3
92 parametersAbsolute structure: Flack x determined using 699 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
1 restraintAbsolute structure parameter: 0.038 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.28497 (8)0.81549 (4)0.61690 (7)0.01346 (16)
Br20.89230 (8)1.00194 (4)0.07683 (7)0.02154 (17)
O1W0.833 (3)0.7318 (14)0.122 (3)0.033 (4)0.25
H1W0.90970.66750.06780.050*0.25
H2W0.84950.80910.11060.050*0.25
N10.7346 (6)0.8674 (3)0.4576 (6)0.0115 (8)
H1N10.62540.85520.52260.014*
H2N10.87870.85560.54530.014*
C20.6978 (8)0.7813 (4)0.2944 (7)0.0132 (10)
H20.82120.79230.22800.016*
C30.4606 (8)0.8026 (4)0.1456 (7)0.0121 (9)
H3A0.43940.74920.03330.015*
H3B0.33660.78680.20740.015*
N40.4418 (7)0.9256 (3)0.0738 (6)0.0132 (9)
H1N40.54880.93810.00680.016*
H2N40.29630.93770.01150.016*
C50.4830 (8)1.0098 (4)0.2399 (6)0.0131 (9)
H5A0.35911.00180.30450.016*
H5B0.47761.08970.18890.016*
C60.7180 (8)0.9880 (5)0.3884 (7)0.0143 (13)
H6A0.84281.00360.32740.017*
H6B0.73911.04110.50100.017*
C70.7125 (11)0.6578 (5)0.3739 (9)0.0206 (13)
H7A0.70720.60280.26820.031*
H7B0.58140.64340.42580.031*
H7C0.85830.64800.47880.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0110 (3)0.0179 (2)0.0117 (3)0.0008 (2)0.00384 (18)0.0013 (2)
Br20.0161 (3)0.0359 (3)0.0137 (3)0.0065 (2)0.0061 (2)0.0041 (2)
O1W0.030 (9)0.025 (8)0.046 (10)0.013 (7)0.011 (8)0.005 (7)
N10.007 (2)0.0171 (17)0.009 (2)0.0000 (16)0.0009 (15)0.0005 (16)
C20.015 (3)0.012 (2)0.012 (2)0.0007 (17)0.0037 (19)0.0029 (17)
C30.015 (2)0.010 (2)0.009 (2)0.0018 (19)0.0002 (18)0.000 (2)
N40.016 (2)0.015 (2)0.007 (2)0.0019 (16)0.0014 (16)0.0016 (15)
C50.017 (3)0.012 (2)0.011 (2)0.0036 (19)0.0045 (18)0.0015 (17)
C60.015 (3)0.017 (3)0.010 (3)0.001 (2)0.002 (2)0.003 (2)
C70.023 (3)0.016 (3)0.023 (4)0.0038 (18)0.006 (3)0.004 (2)
Geometric parameters (Å, º) top
O1W—H1W0.9000N4—C51.497 (6)
O1W—H2W0.8999N4—H1N40.9200
N1—C61.472 (7)N4—H2N40.9200
N1—C21.498 (6)C5—C61.521 (6)
N1—H1N10.9200C5—H5A0.9900
N1—H2N10.9200C5—H5B0.9900
C2—C31.531 (6)C6—H6A0.9900
C2—C71.529 (7)C6—H6B0.9900
C2—H21.0000C7—H7A0.9800
C3—N41.504 (6)C7—H7B0.9800
C3—H3A0.9900C7—H7C0.9800
C3—H3B0.9900
H1W—O1W—H2W138.8C5—N4—H2N4109.3
C6—N1—C2112.8 (4)C3—N4—H2N4109.3
C6—N1—H1N1109.0H1N4—N4—H2N4108.0
C2—N1—H1N1109.0N4—C5—C6110.4 (4)
C6—N1—H2N1109.0N4—C5—H5A109.6
C2—N1—H2N1109.0C6—C5—H5A109.6
H1N1—N1—H2N1107.8N4—C5—H5B109.6
N1—C2—C3109.2 (4)C6—C5—H5B109.6
N1—C2—C7110.6 (4)H5A—C5—H5B108.1
C3—C2—C7110.4 (4)N1—C6—C5110.4 (4)
N1—C2—H2108.9N1—C6—H6A109.6
C3—C2—H2108.9C5—C6—H6A109.6
C7—C2—H2108.9N1—C6—H6B109.6
N4—C3—C2110.5 (4)C5—C6—H6B109.6
N4—C3—H3A109.6H6A—C6—H6B108.1
C2—C3—H3A109.6C2—C7—H7A109.5
N4—C3—H3B109.6C2—C7—H7B109.5
C2—C3—H3B109.6H7A—C7—H7B109.5
H3A—C3—H3B108.1C2—C7—H7C109.5
C5—N4—C3111.5 (4)H7A—C7—H7C109.5
C5—N4—H1N4109.3H7B—C7—H7C109.5
C3—N4—H1N4109.3
C6—N1—C2—C357.4 (5)C2—C3—N4—C556.7 (5)
C6—N1—C2—C7179.0 (4)C3—N4—C5—C656.3 (5)
N1—C2—C3—N455.7 (5)C2—N1—C6—C557.7 (5)
C7—C2—C3—N4177.5 (4)N4—C5—C6—N155.9 (5)
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds