Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Advances in instrumentation allow a material texture to be measured as a collection of spatially resolved crystallite orientations rather than as a collection of pole figures. However, the hyperspherical harmonic expansion of a collection of spatially resolved crystallite orientations is subject to significant truncation error, resulting in ringing artifacts (spurious oscillations around sharp transitions) and false peaks in the orientation distribution function. This article finds that the ringing artifacts and the accompanying regions of negative probability density may be mitigated or removed entirely by modifying the coefficients of the hyperspherical harmonic expansion by a simple multiplicative factor. An addition theorem for the hyperspherical harmonics is derived as an intermediate result.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds