Download citation
Download citation
link to html
The microscopic structures of ThF4–LiF and ThF4–LiF–BeF2 molten salts have been systematically investigated by in situ high-temperature X-ray absorption fine-structure (XAFS) spectroscopy combined with molecular-dynamics (MD) simulations. The results reveal that the local structure of thorium ions was much more disordered in the molten state of the ThF4–LiF–BeF2 salt than that in ThF4–LiF, implying that the Th and F ions were exchanged more frequently in the presence of Be ions. The structures of medium-range-ordered coordination shells (such as Th–F2nd and Th–Th) have been emphasized by experimental and theoretical XAFS analysis, and they play a significant role in transport properties. Using MD simulations, the bonding properties in the molten ThF4–LiF and ThF4–LiF–BeF2 mixtures were evaluated, confirming the above conclusion. This research is, to the best of our knowledge, the first systematic study on the ThF4–LiF–BeF2 molten salt via quantitative in situ XAFS analysis and MD simulations.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600577519009718/rv5116sup1.pdf
Figures S1 to S6, Table S1


Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds