metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(5,6-di­methyl-1,10-phenanthroline-κ2N,N′)copper(II) bis­­(hexa­fluorido­phosphate) aceto­nitrile monosolvate

aInstituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán 04510, DF, México, and bFacultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, DF, México
*Correspondence e-mail: mfa@unam.mx

(Received 8 June 2012; accepted 21 June 2012; online 30 June 2012)

In the title compound, [Cu(C14H12N2)3](PF6)2·CH3CN, the [Cu(5,6-dmp)3]2+ cationic complex (5,6-dmp is 5,6-dimethyl-1,10-phenanthroline) is stabilized by two hexa­fluorido­phosphate anions and one acetonitrile solvent mol­ecule. The coordination geometry around the CuII atom can be described as distorted elongated octa­hedral with Rout = 2.277 (2) Å, Rin = 2.052 (2) Å and a tetra­gonality of 0.9011, acquiring a `static' stereochemistry. In the supra­molecular network, there are inter­molecular C—H⋯F and C—H⋯N inter­actions with R33(16), R22(7), R12(4), R33(16) and C32(7) motifs that lead to an infinite three-dimensional network.

Related literature

For literature on metal complexes with phenanthroline-based ligands related to their intense luminescence, their capacity to inter­act with DNA and also in some cases the induction of DNA cleavage, see: Bencini & Lippolis (2010[Bencini, A. & Lippolis, V. (2010). Coord. Chem. Rev. 254, 2096-2180.]). For details of octa­hedral distortion and motifs, see: Ramakrishnan & Palaniandavar (2008[Ramakrishnan, S. & Palaniandavar, M. (2008). Dalton Trans. pp. 3866-3878.]); Murphy et al. (2006[Murphy, B., Aljabri, M., Mohamed Ahmed, A., Murphy, G., Hathway, B. J., Light, M. E., Geilbrich, T. & Hursthouse, M. B. (2006). Dalton Trans. pp. 357-367.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H12N2)3](PF6)2·C2H3N

  • Mr = 1019.3

  • Monoclinic, P 21 /n

  • a = 9.8566 (3) Å

  • b = 19.9317 (7) Å

  • c = 22.1822 (6) Å

  • β = 93.603 (3)°

  • V = 4349.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 130 K

  • 0.34 × 0.21 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur, Atlas, Gemini diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.643, Tmax = 0.84

  • 20467 measured reflections

  • 8596 independent reflections

  • 5782 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 0.92

  • 8596 reflections

  • 602 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.0063 (19)
Cu1—N1A 2.0144 (19)
Cu1—N2A 2.091 (2)
Cu1—N2B 2.095 (2)
Cu1—N2 2.220 (2)
Cu1—N1B 2.333 (2)
N1A—Cu1—N2A 80.60 (8)
N1—Cu1—N2 78.35 (8)
N2B—Cu1—N1B 75.18 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F1 0.95 2.3 3.149 (3) 148
C1A—H1A⋯N3i 0.95 2.74 3.489 (5) 136
C9—H9⋯F11i 0.95 2.62 3.270 (3) 126
C10—H10⋯F7i 0.95 2.54 3.358 (3) 145
C10—H10⋯F8i 0.95 2.59 3.471 (3) 155
C59—H59C⋯F4ii 0.98 2.3 3.265 (4) 170
C8B—H8B⋯F1iii 0.95 2.51 3.437 (3) 164
C3—H3⋯F8iv 0.95 2.47 3.392 (3) 163
C3A—H3A⋯F4v 0.95 2.62 3.557 (3) 169
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Due the combination of structural and chemical properties, metal complexes with phen-based ligands have been actively studied for their catalytic, redox, photochemical and photophysical properties and, more recently, as building units for the construction of efficient luminescent materials and even photoswitchable molecular devices (Bencini & Lippolis, 2010). Here, we present the crystal structure of the title compound rac-[Cu(5,6-dmp)3](PF6)2 CH3CN 1.

The X-ray structure of 1 consist of both Λ- and Δ-enantiomers of copper(II) complex cation, the molecular structure with crystallographic atom numbering scheme is illustrated in Fig. 1. Selected bond distances and bond angles are given in Table 1. The coordination geometry around Cu(II) can be described as distorted elongated octahedral (DEO) with N1, N1A, N2A, N2B nitrogen atoms occupying the corners of the square plane and N1B and N2 atoms occupying the trans axial positions. The distances (Cu1–N1B, 2.333 (2) Å; Cu1–N2, 2.220 (2) Å) mean Cu–Nout =Rout = 2.2766 (22) Å, are longer than the mean of the four in-plane Cu–N bond distances with Cu1–N1, 2.0063 (19); Cu1–N1A, 2.0144 (19); Cu1–N2A, 2.091 (2); Cu1–N2B, 2.095 (2) Å and mean of Cu–Nin = Rin = 2.0516 (20) Å. The average Cu–N bond distance (2.1641 (21) Å) is significantly longer than that [2.137 (4) Å] observed (Ramakrishnan & Palaniandavar, 2008) for rac-[Cu(5,6-dmp)3](ClO4)2 and very similar than that (2.189 (13) Å) observed (Murphy et al., 2006) for the rac-[Cu(phen)3](ClO4)2. Interestingly, the tetragonality (T =Rin/Rout = 0.9011) of 1 is shorter than that (0.952) of its rac-[Cu(5,6-dmp)3](ClO4)2 analogue suggesting that the former complex 1 acquires a static stereochemistry. Also, the bite angles of 5,6-dmp ligands in 1 (80.60 (8), 78.35 (8), 75.18 (8)°) deviate significantly from the ideal angle of 90°, which is consistent with the distorted coordination geometry. The average value (78.04°) of bite angles is less than that (78.5 °) (Murphy et al., 2006) for the rac-[Cu(phen)3]2+ analogue, which is in completely agreement with the stronger coordination of the 5,6-dmp ligand.

The hexafluorophosphate ion and acetonitrile solvent are not involved in the coordination sphere of the Cu ion, but are in the crystal lattice. In the supramolecular network there are C—H···F and C—H···N intermolecular interactions of type hydrogen bond (Table 2) that help stabilize crystal packing (Fig. 2). The intermolecular interactions C1A—H1A..N3, C59—H59..F4 and C8B—H8B··· F1 are forming the R33(16) motif. In addition, the hydrogen bond type formed from the donor-aceptor atoms: C3—H3···F8, C9—H9..F11, C10—H10···F7, C9A—H9A···F7 and C10—H10..F8 are forming the R22(7), R12(4), R33(16) and C32 (7) motif's mainly (Etter et al., 1990). All these interactions lead to infinite three-dimensional network superstructure.

Related literature top

For literature on metal complexes with phenanthroline-based ligands related to their intense luminescence, their capacity to interact with DNA and also in some cases the induction of DNA cleavage, see: Bencini & Lippolis (2010). For details of octahedral distortion and motifs, see: Ramakrishnan & Palaniandavar (2008); Murphy et al. (2006); Etter et al. (1990). For related literature [on what subject?], see: Clark & Reid (1995).

Experimental top

1 mmol (232 mg) of hemi-pentahydrated Cu(NO3)2 was dissolved in 5 ml of MeOH and mixed with 10 ml of ethanol solution of 5,6-dimethyl-1,10-phenanthroline (3 mmol, 625 mg). After 2 h of strong stirring, the resulting emerald green solution was mixed with three equivalents of ammonium hexafluorophosphate (3 mmol, 489 mg) resulting in a green powder, washed several times with cold water to eliminate the NH4PF6 excess. Once dry, the green product was isolated with 89% yield (870 mg). The product was redissolved in EtOH and the solvent was slowly evaporated to get suitable single crystals. Anal. calcd. for C42H36N6P2F12Cu (978.24 g/mol): C, 51.56; H, 3.70; N, 8.59. Found: C, 51.02; H, 3.81; N, 8.67. IR (KBr disc, cm-1):3412 br, 3067 br, 2923 m, 1621 m, 1605 m, 1583 s, 1523 m, 1481 m, 1430 m, 1358 s,, 875 s, 728 m.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.95 (aromatic CH) and 0.98 (methyl CH3) and with Uiso of 1.2 and 1.5 Ueq(C) respectively.

Structure description top

Due the combination of structural and chemical properties, metal complexes with phen-based ligands have been actively studied for their catalytic, redox, photochemical and photophysical properties and, more recently, as building units for the construction of efficient luminescent materials and even photoswitchable molecular devices (Bencini & Lippolis, 2010). Here, we present the crystal structure of the title compound rac-[Cu(5,6-dmp)3](PF6)2 CH3CN 1.

The X-ray structure of 1 consist of both Λ- and Δ-enantiomers of copper(II) complex cation, the molecular structure with crystallographic atom numbering scheme is illustrated in Fig. 1. Selected bond distances and bond angles are given in Table 1. The coordination geometry around Cu(II) can be described as distorted elongated octahedral (DEO) with N1, N1A, N2A, N2B nitrogen atoms occupying the corners of the square plane and N1B and N2 atoms occupying the trans axial positions. The distances (Cu1–N1B, 2.333 (2) Å; Cu1–N2, 2.220 (2) Å) mean Cu–Nout =Rout = 2.2766 (22) Å, are longer than the mean of the four in-plane Cu–N bond distances with Cu1–N1, 2.0063 (19); Cu1–N1A, 2.0144 (19); Cu1–N2A, 2.091 (2); Cu1–N2B, 2.095 (2) Å and mean of Cu–Nin = Rin = 2.0516 (20) Å. The average Cu–N bond distance (2.1641 (21) Å) is significantly longer than that [2.137 (4) Å] observed (Ramakrishnan & Palaniandavar, 2008) for rac-[Cu(5,6-dmp)3](ClO4)2 and very similar than that (2.189 (13) Å) observed (Murphy et al., 2006) for the rac-[Cu(phen)3](ClO4)2. Interestingly, the tetragonality (T =Rin/Rout = 0.9011) of 1 is shorter than that (0.952) of its rac-[Cu(5,6-dmp)3](ClO4)2 analogue suggesting that the former complex 1 acquires a static stereochemistry. Also, the bite angles of 5,6-dmp ligands in 1 (80.60 (8), 78.35 (8), 75.18 (8)°) deviate significantly from the ideal angle of 90°, which is consistent with the distorted coordination geometry. The average value (78.04°) of bite angles is less than that (78.5 °) (Murphy et al., 2006) for the rac-[Cu(phen)3]2+ analogue, which is in completely agreement with the stronger coordination of the 5,6-dmp ligand.

The hexafluorophosphate ion and acetonitrile solvent are not involved in the coordination sphere of the Cu ion, but are in the crystal lattice. In the supramolecular network there are C—H···F and C—H···N intermolecular interactions of type hydrogen bond (Table 2) that help stabilize crystal packing (Fig. 2). The intermolecular interactions C1A—H1A..N3, C59—H59..F4 and C8B—H8B··· F1 are forming the R33(16) motif. In addition, the hydrogen bond type formed from the donor-aceptor atoms: C3—H3···F8, C9—H9..F11, C10—H10···F7, C9A—H9A···F7 and C10—H10..F8 are forming the R22(7), R12(4), R33(16) and C32 (7) motif's mainly (Etter et al., 1990). All these interactions lead to infinite three-dimensional network superstructure.

For literature on metal complexes with phenanthroline-based ligands related to their intense luminescence, their capacity to interact with DNA and also in some cases the induction of DNA cleavage, see: Bencini & Lippolis (2010). For details of octahedral distortion and motifs, see: Ramakrishnan & Palaniandavar (2008); Murphy et al. (2006); Etter et al. (1990). For related literature [on what subject?], see: Clark & Reid (1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction (2009); cell refinement: CrysAlis RED (Oxford Diffraction 2009); data reduction: CrysAlis RED (Oxford Diffraction 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and the atom labelling scheme for (1). Displacement ellipsoids are draw at the 50% probability level and H atoms are shown as circles of arbitrary size.
[Figure 2] Fig. 2. Intermolecular contacts of type hydrogen bond (dashed lines) in the crystal of (1,) forming infinite ribbons of R33(16), R22(7), R12(4), R33(16) and C32 (7) motif's.
Tris(5,6-dimethyl-1,10-phenanthroline-κ2N,N')copper(II) bis(hexafluoridophosphate) acetonitrile monosolvate top
Crystal data top
[Cu(C14H12N2)3](PF6)2·C2H3NF(000) = 2076
Mr = 1019.3Dx = 1.557 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8566 (3) ÅCell parameters from 6486 reflections
b = 19.9317 (7) Åθ = 3.4–26.0°
c = 22.1822 (6) ŵ = 0.67 mm1
β = 93.603 (3)°T = 130 K
V = 4349.3 (2) Å3Block, blue
Z = 40.34 × 0.21 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur, Atlas, Gemini
diffractometer
8596 independent reflections
Graphite monochromator5782 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.037
ω scansθmax = 26.1°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1112
Tmin = 0.643, Tmax = 0.84k = 2419
20467 measured reflectionsl = 2722
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0518P)2]
where P = (Fo2 + 2Fc2)/3
8596 reflections(Δ/σ)max = 0.001
602 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu(C14H12N2)3](PF6)2·C2H3NV = 4349.3 (2) Å3
Mr = 1019.3Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8566 (3) ŵ = 0.67 mm1
b = 19.9317 (7) ÅT = 130 K
c = 22.1822 (6) Å0.34 × 0.21 × 0.09 mm
β = 93.603 (3)°
Data collection top
Oxford Diffraction Xcalibur, Atlas, Gemini
diffractometer
8596 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
5782 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.84Rint = 0.037
20467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.92Δρmax = 0.99 e Å3
8596 reflectionsΔρmin = 0.42 e Å3
602 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5532 (3)0.21466 (13)0.11579 (11)0.0210 (6)
H10.62850.20480.09260.025*
C1A0.3305 (3)0.27265 (14)0.13015 (10)0.0219 (6)
H1A0.27770.2340.12270.026*
C1B0.7496 (3)0.24812 (15)0.03627 (11)0.0297 (7)
H1B0.76720.29160.02010.036*
C20.5593 (3)0.19719 (14)0.17668 (10)0.0245 (6)
H20.63720.1750.19450.029*
C2A0.3324 (3)0.29670 (14)0.18916 (10)0.0245 (6)
H2A0.28210.27440.22120.029*
C2B0.8519 (3)0.21597 (17)0.06489 (12)0.0355 (8)
H2B0.93740.23720.06810.043*
C30.4527 (3)0.21216 (14)0.21058 (11)0.0263 (6)
H30.45630.20020.25210.032*
C3A0.4067 (3)0.35210 (14)0.20058 (11)0.0243 (6)
H3A0.40940.36830.24080.029*
C3B0.8290 (3)0.15336 (16)0.08846 (11)0.0316 (7)
H3B0.89850.13090.10830.038*
C40.3372 (3)0.24522 (12)0.18435 (10)0.0188 (6)
C4A0.4801 (3)0.38584 (13)0.15286 (10)0.0201 (6)
C4B0.7020 (3)0.12232 (14)0.08313 (10)0.0250 (6)
C50.2224 (3)0.26558 (14)0.21789 (11)0.0244 (6)
C5A0.5594 (3)0.44604 (14)0.16013 (11)0.0249 (6)
C5B0.6704 (3)0.05518 (15)0.10550 (11)0.0310 (7)
C60.1182 (3)0.30107 (13)0.19016 (11)0.0241 (6)
C6A0.6233 (3)0.47694 (13)0.11138 (11)0.0223 (6)
C6B0.5512 (3)0.02559 (14)0.09430 (11)0.0295 (7)
C70.1167 (3)0.31453 (13)0.12576 (10)0.0203 (6)
C7A0.6171 (3)0.44820 (13)0.05164 (11)0.0201 (6)
C7B0.4483 (3)0.06267 (13)0.06392 (10)0.0239 (6)
C80.0110 (3)0.34946 (13)0.09339 (12)0.0258 (6)
H80.06470.36540.11370.031*
C8A0.6846 (3)0.47501 (14)0.00109 (11)0.0247 (6)
H8A0.73790.51450.00140.03*
C8B0.3204 (3)0.03597 (15)0.05259 (11)0.0329 (7)
H8B0.2990.0090.06360.039*
C90.0173 (3)0.36040 (14)0.03297 (12)0.0269 (6)
H90.05290.38460.01120.032*
C9A0.6732 (3)0.44432 (14)0.05564 (11)0.0263 (6)
H9A0.7190.46220.0910.032*
C9B0.2267 (3)0.07456 (16)0.02572 (12)0.0341 (7)
H9B0.14110.05620.01710.041*
C100.1275 (3)0.33591 (13)0.00339 (11)0.0229 (6)
H100.12980.34310.03890.028*
C10A0.5942 (3)0.38676 (14)0.05904 (11)0.0238 (6)
H10A0.58630.36620.09730.029*
C10B0.2580 (3)0.14107 (14)0.01109 (11)0.0279 (7)
H10B0.19140.1680.00640.033*
C110.2236 (3)0.29286 (12)0.09263 (10)0.0172 (5)
C11A0.5413 (3)0.38987 (13)0.04406 (10)0.0182 (6)
C11B0.4733 (3)0.12973 (13)0.04594 (10)0.0203 (6)
C120.3380 (3)0.25989 (12)0.12250 (10)0.0164 (5)
C12A0.4711 (2)0.35829 (12)0.09492 (10)0.0171 (5)
C12B0.6041 (3)0.15872 (13)0.05341 (10)0.0194 (6)
C130.2285 (3)0.24542 (17)0.28391 (11)0.0393 (8)
H13A0.14790.26240.30260.059*
H13B0.31040.26440.30470.059*
H13C0.23130.19640.28710.059*
C13A0.5722 (3)0.47206 (16)0.22359 (11)0.0389 (8)
H13D0.61520.51640.22180.058*
H13E0.48160.47560.24430.058*
H13F0.6280.44110.24580.058*
C13B0.7767 (4)0.02161 (19)0.14158 (15)0.0549 (10)
H13G0.85160.00570.11410.082*
H13H0.81140.05390.17010.082*
H13I0.73580.01660.16380.082*
C140.0007 (3)0.32836 (16)0.22315 (12)0.0369 (7)
H14A0.01390.31740.26620.055*
H14B0.08420.30820.20650.055*
H14C0.00370.37720.21820.055*
C14A0.7017 (3)0.54104 (14)0.11791 (13)0.0321 (7)
H14D0.79880.53080.11880.048*
H14E0.68690.57060.08360.048*
H14F0.67050.56340.15560.048*
C14B0.5192 (4)0.04628 (15)0.11287 (13)0.0424 (8)
H14G0.46640.04650.15180.064*
H14H0.46630.06770.08220.064*
H14I0.60420.0710.11660.064*
C590.2641 (4)0.05070 (17)0.78344 (15)0.0481 (9)
H59A0.35830.06150.79670.072*
H59B0.2580.04230.73980.072*
H59C0.23520.01060.80470.072*
C610.1786 (5)0.1053 (2)0.7965 (2)0.0732 (13)
Cu10.42728 (3)0.267704 (15)0.001112 (12)0.01713 (9)
N10.4453 (2)0.24472 (10)0.08931 (8)0.0180 (5)
N1A0.3996 (2)0.30174 (10)0.08428 (8)0.0179 (5)
N1B0.6283 (2)0.22133 (11)0.03035 (9)0.0238 (5)
N20.2294 (2)0.30295 (10)0.03186 (8)0.0190 (5)
N2A0.5294 (2)0.35941 (11)0.01066 (8)0.0198 (5)
N2B0.3779 (2)0.16806 (11)0.02082 (8)0.0215 (5)
N30.1085 (5)0.1501 (2)0.8097 (2)0.1129 (16)
P10.93016 (7)0.12973 (4)0.10542 (3)0.02482 (17)
P20.03660 (8)0.42966 (4)0.84305 (3)0.02755 (18)
F10.78807 (15)0.12757 (8)0.06591 (7)0.0332 (4)
F20.98902 (18)0.18154 (10)0.05951 (7)0.0497 (5)
F30.98123 (19)0.06887 (10)0.06639 (9)0.0575 (6)
F40.8699 (2)0.07824 (10)0.15167 (7)0.0652 (7)
F50.87735 (18)0.19075 (9)0.14395 (8)0.0497 (5)
F61.07090 (19)0.13123 (9)0.14446 (8)0.0535 (5)
F70.18126 (16)0.42809 (8)0.88046 (7)0.0390 (4)
F80.02636 (18)0.34994 (8)0.85120 (7)0.0404 (4)
F90.10949 (18)0.41899 (9)0.78168 (6)0.0397 (4)
F100.0491 (2)0.50900 (9)0.83575 (7)0.0510 (5)
F110.03529 (19)0.44029 (10)0.90485 (7)0.0470 (5)
F120.10720 (18)0.43035 (11)0.80643 (7)0.0530 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (14)0.0184 (14)0.0242 (13)0.0031 (12)0.0003 (11)0.0012 (11)
C1A0.0193 (14)0.0213 (15)0.0249 (13)0.0001 (12)0.0006 (10)0.0044 (12)
C1B0.0302 (17)0.0305 (17)0.0275 (14)0.0063 (14)0.0047 (12)0.0021 (12)
C20.0265 (15)0.0237 (15)0.0226 (13)0.0053 (13)0.0050 (11)0.0008 (12)
C2A0.0258 (15)0.0287 (16)0.0183 (12)0.0031 (13)0.0046 (11)0.0034 (12)
C2B0.0232 (16)0.052 (2)0.0314 (15)0.0040 (15)0.0008 (12)0.0102 (15)
C30.0383 (17)0.0225 (15)0.0174 (12)0.0008 (13)0.0037 (12)0.0009 (11)
C3A0.0247 (15)0.0303 (16)0.0179 (12)0.0037 (13)0.0022 (11)0.0017 (12)
C3B0.0266 (17)0.044 (2)0.0242 (14)0.0089 (15)0.0045 (12)0.0069 (14)
C40.0238 (15)0.0133 (13)0.0196 (12)0.0035 (11)0.0033 (10)0.0020 (10)
C4A0.0177 (14)0.0220 (15)0.0208 (12)0.0052 (12)0.0033 (10)0.0000 (11)
C4B0.0289 (16)0.0288 (16)0.0173 (12)0.0088 (14)0.0004 (11)0.0032 (12)
C50.0319 (16)0.0211 (15)0.0209 (12)0.0051 (13)0.0077 (11)0.0022 (12)
C5A0.0223 (15)0.0238 (15)0.0293 (14)0.0016 (13)0.0066 (11)0.0048 (12)
C5B0.0417 (19)0.0269 (17)0.0245 (14)0.0162 (15)0.0030 (13)0.0030 (13)
C60.0283 (16)0.0182 (14)0.0267 (13)0.0025 (13)0.0101 (11)0.0000 (12)
C6A0.0192 (14)0.0185 (14)0.0301 (14)0.0027 (12)0.0081 (11)0.0010 (12)
C6B0.0449 (19)0.0181 (15)0.0253 (14)0.0088 (14)0.0003 (13)0.0023 (12)
C70.0236 (15)0.0138 (13)0.0239 (13)0.0031 (12)0.0053 (11)0.0033 (11)
C7A0.0136 (14)0.0181 (14)0.0286 (13)0.0038 (11)0.0029 (10)0.0044 (11)
C7B0.0355 (17)0.0190 (14)0.0171 (12)0.0013 (13)0.0000 (11)0.0005 (11)
C80.0204 (15)0.0207 (15)0.0368 (15)0.0003 (12)0.0049 (12)0.0004 (13)
C8A0.0203 (15)0.0170 (14)0.0367 (15)0.0007 (12)0.0018 (11)0.0070 (12)
C8B0.049 (2)0.0219 (16)0.0271 (14)0.0041 (15)0.0003 (13)0.0005 (13)
C90.0199 (15)0.0216 (15)0.0385 (16)0.0040 (12)0.0041 (12)0.0022 (13)
C9A0.0235 (15)0.0270 (16)0.0278 (14)0.0007 (13)0.0040 (11)0.0116 (13)
C9B0.0319 (17)0.0358 (18)0.0353 (15)0.0085 (15)0.0079 (13)0.0044 (14)
C100.0241 (15)0.0206 (15)0.0233 (13)0.0000 (13)0.0045 (11)0.0015 (12)
C10A0.0270 (16)0.0247 (15)0.0193 (12)0.0047 (13)0.0002 (11)0.0045 (12)
C10B0.0306 (17)0.0279 (16)0.0258 (14)0.0012 (14)0.0075 (12)0.0003 (12)
C110.0215 (14)0.0106 (12)0.0194 (12)0.0035 (11)0.0013 (10)0.0029 (10)
C11A0.0168 (14)0.0167 (14)0.0213 (12)0.0035 (11)0.0019 (10)0.0001 (11)
C11B0.0284 (16)0.0182 (14)0.0144 (11)0.0056 (12)0.0012 (11)0.0024 (11)
C120.0208 (14)0.0115 (12)0.0168 (11)0.0034 (11)0.0002 (10)0.0028 (10)
C12A0.0147 (13)0.0167 (14)0.0199 (12)0.0027 (11)0.0019 (10)0.0008 (11)
C12B0.0257 (15)0.0193 (14)0.0130 (11)0.0067 (12)0.0000 (10)0.0013 (11)
C130.045 (2)0.051 (2)0.0232 (14)0.0070 (17)0.0122 (13)0.0049 (14)
C13A0.048 (2)0.0389 (19)0.0305 (15)0.0091 (16)0.0043 (14)0.0113 (14)
C13B0.060 (2)0.049 (2)0.058 (2)0.026 (2)0.0203 (17)0.0133 (18)
C140.0410 (19)0.0337 (18)0.0382 (16)0.0100 (16)0.0205 (14)0.0043 (14)
C14A0.0313 (17)0.0229 (16)0.0429 (16)0.0037 (14)0.0078 (13)0.0012 (14)
C14B0.063 (2)0.0213 (17)0.0431 (17)0.0065 (16)0.0057 (16)0.0087 (14)
C590.047 (2)0.042 (2)0.057 (2)0.0012 (18)0.0131 (17)0.0123 (17)
C610.072 (3)0.049 (3)0.098 (3)0.019 (3)0.008 (3)0.003 (3)
Cu10.02005 (17)0.01618 (17)0.01505 (15)0.00045 (14)0.00014 (11)0.00118 (13)
N10.0195 (12)0.0158 (11)0.0186 (10)0.0003 (9)0.0006 (8)0.0018 (9)
N1A0.0167 (11)0.0161 (11)0.0207 (10)0.0006 (9)0.0004 (8)0.0025 (9)
N1B0.0301 (13)0.0202 (13)0.0204 (10)0.0002 (11)0.0029 (9)0.0003 (10)
N20.0210 (12)0.0169 (12)0.0189 (10)0.0002 (10)0.0010 (9)0.0033 (9)
N2A0.0181 (12)0.0201 (12)0.0213 (10)0.0004 (10)0.0016 (9)0.0033 (9)
N2B0.0262 (13)0.0224 (12)0.0162 (10)0.0039 (11)0.0036 (9)0.0002 (9)
N30.111 (4)0.078 (3)0.152 (4)0.009 (3)0.023 (3)0.022 (3)
P10.0245 (4)0.0236 (4)0.0261 (3)0.0015 (3)0.0006 (3)0.0013 (3)
P20.0312 (4)0.0258 (4)0.0251 (4)0.0061 (3)0.0020 (3)0.0028 (3)
F10.0238 (9)0.0352 (10)0.0400 (9)0.0040 (8)0.0027 (7)0.0013 (8)
F20.0442 (11)0.0628 (13)0.0426 (9)0.0153 (10)0.0059 (8)0.0144 (9)
F30.0413 (11)0.0521 (13)0.0776 (13)0.0195 (10)0.0091 (10)0.0309 (11)
F40.0966 (17)0.0602 (14)0.0367 (9)0.0424 (13)0.0132 (10)0.0215 (10)
F50.0388 (11)0.0458 (12)0.0659 (11)0.0044 (9)0.0132 (9)0.0276 (10)
F60.0442 (12)0.0435 (12)0.0688 (12)0.0025 (9)0.0291 (10)0.0036 (10)
F70.0357 (10)0.0354 (10)0.0443 (9)0.0017 (8)0.0093 (8)0.0096 (8)
F80.0501 (12)0.0291 (10)0.0409 (9)0.0071 (9)0.0069 (8)0.0016 (8)
F90.0519 (11)0.0383 (11)0.0295 (8)0.0069 (9)0.0076 (8)0.0026 (8)
F100.0838 (15)0.0231 (10)0.0463 (10)0.0131 (10)0.0066 (9)0.0018 (8)
F110.0539 (12)0.0581 (13)0.0299 (8)0.0206 (10)0.0096 (8)0.0007 (8)
F120.0383 (11)0.0735 (14)0.0452 (10)0.0160 (10)0.0131 (8)0.0013 (10)
Geometric parameters (Å, º) top
C1—N11.326 (3)C10—H100.95
C1—C21.392 (3)C10A—N2A1.331 (3)
C1—H10.95C10A—H10A0.95
C1A—N1A1.322 (3)C10B—N2B1.328 (4)
C1A—C2A1.395 (3)C10B—H10B0.95
C1A—H1A0.95C11—N21.368 (3)
C1B—N1B1.323 (3)C11—C121.431 (3)
C1B—C2B1.383 (4)C11A—N2A1.369 (3)
C1B—H1B0.95C11A—C12A1.432 (3)
C2—C31.363 (4)C11B—N2B1.358 (3)
C2—H20.95C11B—C12B1.432 (4)
C2A—C3A1.357 (4)C12—N11.360 (3)
C2A—H2A0.95C12A—N1A1.358 (3)
C2B—C3B1.366 (4)C12B—N1B1.364 (3)
C2B—H2B0.95C13—H13A0.98
C3—C41.409 (4)C13—H13B0.98
C3—H30.95C13—H13C0.98
C3A—C4A1.414 (3)C13A—H13D0.98
C3A—H3A0.95C13A—H13E0.98
C3B—C4B1.408 (4)C13A—H13F0.98
C3B—H3B0.95C13B—H13G0.98
C4—C121.403 (3)C13B—H13H0.98
C4—C51.451 (4)C13B—H13I0.98
C4A—C12A1.405 (3)C14—H14A0.98
C4A—C5A1.447 (4)C14—H14B0.98
C4B—C12B1.404 (4)C14—H14C0.98
C4B—C5B1.454 (4)C14A—H14D0.98
C5—C61.361 (4)C14A—H14E0.98
C5—C131.516 (3)C14A—H14F0.98
C5A—C6A1.364 (4)C14B—H14G0.98
C5A—C13A1.513 (3)C14B—H14H0.98
C5B—C6B1.352 (4)C14B—H14I0.98
C5B—C13B1.513 (4)C59—C611.418 (6)
C6—C71.453 (3)C59—H59A0.98
C6—C141.509 (4)C59—H59B0.98
C6A—C7A1.448 (3)C59—H59C0.98
C6A—C14A1.505 (4)C61—N31.176 (6)
C6B—C7B1.454 (4)Cu1—N12.0063 (19)
C6B—C14B1.518 (4)Cu1—N1A2.0144 (19)
C7—C111.391 (3)Cu1—N2A2.091 (2)
C7—C81.411 (4)Cu1—N2B2.095 (2)
C7A—C11A1.398 (4)Cu1—N22.220 (2)
C7A—C8A1.413 (3)Cu1—N1B2.333 (2)
C7B—C8B1.405 (4)P1—F21.5857 (18)
C7B—C11B1.412 (4)P1—F61.5889 (17)
C8—C91.363 (4)P1—F31.5904 (19)
C8—H80.95P1—F41.5923 (19)
C8A—C9A1.367 (4)P1—F51.5927 (18)
C8A—H8A0.95P1—F11.6053 (15)
C8B—C9B1.367 (4)P1—F11.6053 (15)
C8B—H8B0.95P2—F121.5888 (17)
C9—C101.392 (4)P2—F91.5930 (17)
C9—H90.95P2—F101.5954 (19)
C9A—C10A1.391 (4)P2—F111.5963 (17)
C9A—H9A0.95P2—F81.6030 (18)
C9B—C10B1.395 (4)P2—F71.6044 (16)
C9B—H9B0.95F1—F10.000 (6)
C10—N21.327 (3)
N1—C1—C2121.8 (2)C5—C13—H13C109.5
N1—C1—H1119.1H13A—C13—H13C109.5
C2—C1—H1119.1H13B—C13—H13C109.5
N1A—C1A—C2A122.3 (3)C5A—C13A—H13D109.5
N1A—C1A—H1A118.8C5A—C13A—H13E109.5
C2A—C1A—H1A118.8H13D—C13A—H13E109.5
N1B—C1B—C2B123.2 (3)C5A—C13A—H13F109.5
N1B—C1B—H1B118.4H13D—C13A—H13F109.5
C2B—C1B—H1B118.4H13E—C13A—H13F109.5
C3—C2—C1119.5 (2)C5B—C13B—H13G109.5
C3—C2—H2120.2C5B—C13B—H13H109.5
C1—C2—H2120.2H13G—C13B—H13H109.5
C3A—C2A—C1A119.6 (2)C5B—C13B—H13I109.5
C3A—C2A—H2A120.2H13G—C13B—H13I109.5
C1A—C2A—H2A120.2H13H—C13B—H13I109.5
C3B—C2B—C1B119.4 (3)C6—C14—H14A109.5
C3B—C2B—H2B120.3C6—C14—H14B109.5
C1B—C2B—H2B120.3H14A—C14—H14B109.5
C2—C3—C4120.4 (2)C6—C14—H14C109.5
C2—C3—H3119.8H14A—C14—H14C109.5
C4—C3—H3119.8H14B—C14—H14C109.5
C2A—C3A—C4A120.2 (2)C6A—C14A—H14D109.5
C2A—C3A—H3A119.9C6A—C14A—H14E109.5
C4A—C3A—H3A119.9H14D—C14A—H14E109.5
C2B—C3B—C4B119.7 (3)C6A—C14A—H14F109.5
C2B—C3B—H3B120.1H14D—C14A—H14F109.5
C4B—C3B—H3B120.1H14E—C14A—H14F109.5
C12—C4—C3116.5 (2)C6B—C14B—H14G109.5
C12—C4—C5119.7 (2)C6B—C14B—H14H109.5
C3—C4—C5123.7 (2)H14G—C14B—H14H109.5
C12A—C4A—C3A116.1 (2)C6B—C14B—H14I109.5
C12A—C4A—C5A119.4 (2)H14G—C14B—H14I109.5
C3A—C4A—C5A124.4 (2)H14H—C14B—H14I109.5
C12B—C4B—C3B116.9 (3)C61—C59—H59A109.5
C12B—C4B—C5B119.8 (3)C61—C59—H59B109.5
C3B—C4B—C5B123.2 (3)H59A—C59—H59B109.5
C6—C5—C4120.3 (2)C61—C59—H59C109.5
C6—C5—C13123.9 (2)H59A—C59—H59C109.5
C4—C5—C13115.8 (2)H59B—C59—H59C109.5
C6A—C5A—C4A120.8 (2)N3—C61—C59177.5 (5)
C6A—C5A—C13A121.5 (3)N1—Cu1—N1A172.89 (8)
C4A—C5A—C13A117.7 (2)N1—Cu1—N2A95.07 (8)
C6B—C5B—C4B120.6 (3)N1A—Cu1—N2A80.60 (8)
C6B—C5B—C13B122.9 (3)N1—Cu1—N2B90.86 (8)
C4B—C5B—C13B116.6 (3)N1A—Cu1—N2B94.88 (8)
C5—C6—C7120.1 (2)N2A—Cu1—N2B162.88 (9)
C5—C6—C14123.2 (2)N1—Cu1—N278.35 (8)
C7—C6—C14116.7 (2)N1A—Cu1—N296.47 (8)
C5A—C6A—C7A120.2 (2)N2A—Cu1—N296.82 (8)
C5A—C6A—C14A121.4 (2)N2B—Cu1—N2100.11 (8)
C7A—C6A—C14A118.4 (2)N1—Cu1—N1B100.17 (8)
C5B—C6B—C7B120.2 (3)N1A—Cu1—N1B85.38 (8)
C5B—C6B—C14B122.0 (3)N2A—Cu1—N1B87.95 (8)
C7B—C6B—C14B117.8 (3)N2B—Cu1—N1B75.18 (8)
C11—C7—C8116.4 (2)N2—Cu1—N1B175.10 (8)
C11—C7—C6120.0 (2)C1—N1—C12119.4 (2)
C8—C7—C6123.6 (2)C1—N1—Cu1123.67 (17)
C11A—C7A—C8A116.2 (2)C12—N1—Cu1116.96 (15)
C11A—C7A—C6A119.5 (2)C1A—N1A—C12A118.6 (2)
C8A—C7A—C6A124.3 (2)C1A—N1A—Cu1127.48 (18)
C8B—C7B—C11B116.8 (3)C12A—N1A—Cu1113.71 (14)
C8B—C7B—C6B123.4 (3)C1B—N1B—C12B118.1 (2)
C11B—C7B—C6B119.8 (3)C1B—N1B—Cu1131.25 (19)
C9—C8—C7120.1 (3)C12B—N1B—Cu1110.03 (17)
C9—C8—H8120C10—N2—C11117.7 (2)
C7—C8—H8120C10—N2—Cu1131.61 (17)
C9A—C8A—C7A120.2 (3)C11—N2—Cu1110.37 (15)
C9A—C8A—H8A119.9C10A—N2A—C11A118.0 (2)
C7A—C8A—H8A119.9C10A—N2A—Cu1130.06 (18)
C9B—C8B—C7B120.2 (3)C11A—N2A—Cu1111.44 (15)
C9B—C8B—H8B119.9C10B—N2B—C11B119.0 (2)
C7B—C8B—H8B119.9C10B—N2B—Cu1122.84 (19)
C8—C9—C10119.5 (2)C11B—N2B—Cu1118.14 (18)
C8—C9—H9120.2F2—P1—F689.75 (10)
C10—C9—H9120.2F2—P1—F390.35 (11)
C8A—C9A—C10A119.6 (2)F6—P1—F390.90 (10)
C8A—C9A—H9A120.2F2—P1—F4179.41 (13)
C10A—C9A—H9A120.2F6—P1—F490.54 (11)
C8B—C9B—C10B119.4 (3)F3—P1—F490.16 (12)
C8B—C9B—H9B120.3F2—P1—F589.56 (11)
C10B—C9B—H9B120.3F6—P1—F589.81 (10)
N2—C10—C9122.6 (2)F3—P1—F5179.28 (11)
N2—C10—H10118.7F4—P1—F589.92 (11)
C9—C10—H10118.7F2—P1—F190.50 (9)
N2A—C10A—C9A122.4 (2)F6—P1—F1179.54 (11)
N2A—C10A—H10A118.8F3—P1—F188.71 (9)
C9A—C10A—H10A118.8F4—P1—F189.22 (10)
N2B—C10B—C9B122.2 (3)F5—P1—F190.58 (9)
N2B—C10B—H10B118.9F2—P1—F190.50 (9)
C9B—C10B—H10B118.9F6—P1—F1179.54 (11)
N2—C11—C7123.7 (2)F3—P1—F188.71 (9)
N2—C11—C12116.3 (2)F4—P1—F189.22 (10)
C7—C11—C12119.9 (2)F5—P1—F190.58 (9)
N2A—C11A—C7A123.5 (2)F1—P1—F10.00 (16)
N2A—C11A—C12A116.1 (2)F12—P2—F990.00 (9)
C7A—C11A—C12A120.4 (2)F12—P2—F1090.66 (11)
N2B—C11B—C7B122.3 (3)F9—P2—F1090.21 (10)
N2B—C11B—C12B118.2 (2)F12—P2—F1190.46 (10)
C7B—C11B—C12B119.5 (2)F9—P2—F11179.54 (11)
N1—C12—C4122.4 (2)F10—P2—F1189.82 (10)
N1—C12—C11117.9 (2)F12—P2—F890.34 (10)
C4—C12—C11119.7 (2)F9—P2—F889.95 (10)
N1A—C12A—C4A123.1 (2)F10—P2—F8178.99 (10)
N1A—C12A—C11A117.3 (2)F11—P2—F890.01 (10)
C4A—C12A—C11A119.6 (2)F12—P2—F7179.26 (12)
N1B—C12B—C4B122.6 (3)F9—P2—F790.32 (9)
N1B—C12B—C11B117.6 (2)F10—P2—F790.00 (10)
C4B—C12B—C11B119.7 (2)F11—P2—F789.22 (9)
C5—C13—H13A109.5F8—P2—F789.00 (9)
C5—C13—H13B109.5F1—F1—P10 (10)
H13A—C13—H13B109.5
N1—C1—C2—C31.1 (4)C11—C12—N1—C1179.4 (2)
N1A—C1A—C2A—C3A0.4 (4)C4—C12—N1—Cu1178.82 (18)
N1B—C1B—C2B—C3B0.1 (4)C11—C12—N1—Cu12.1 (3)
C1—C2—C3—C40.2 (4)N1A—Cu1—N1—C1137.6 (6)
C1A—C2A—C3A—C4A0.9 (4)N2A—Cu1—N1—C185.4 (2)
C1B—C2B—C3B—C4B0.2 (4)N2B—Cu1—N1—C178.5 (2)
C2—C3—C4—C121.4 (4)N2—Cu1—N1—C1178.7 (2)
C2—C3—C4—C5177.1 (3)N1B—Cu1—N1—C13.4 (2)
C2A—C3A—C4A—C12A0.4 (4)N1A—Cu1—N1—C1244.0 (8)
C2A—C3A—C4A—C5A178.5 (3)N2A—Cu1—N1—C1296.21 (18)
C2B—C3B—C4B—C12B0.3 (4)N2B—Cu1—N1—C1299.86 (18)
C2B—C3B—C4B—C5B178.3 (2)N2—Cu1—N1—C120.28 (17)
C12—C4—C5—C62.6 (4)N1B—Cu1—N1—C12174.96 (17)
C3—C4—C5—C6175.9 (2)C2A—C1A—N1A—C12A2.3 (4)
C12—C4—C5—C13178.0 (2)C2A—C1A—N1A—Cu1171.71 (19)
C3—C4—C5—C133.6 (4)C4A—C12A—N1A—C1A2.9 (4)
C12A—C4A—C5A—C6A1.3 (4)C11A—C12A—N1A—C1A178.0 (2)
C3A—C4A—C5A—C6A177.6 (3)C4A—C12A—N1A—Cu1171.92 (19)
C12A—C4A—C5A—C13A177.0 (2)C11A—C12A—N1A—Cu17.2 (3)
C3A—C4A—C5A—C13A4.2 (4)N1—Cu1—N1A—C1A124.7 (6)
C12B—C4B—C5B—C6B4.6 (4)N2A—Cu1—N1A—C1A177.6 (2)
C3B—C4B—C5B—C6B174.0 (2)N2B—Cu1—N1A—C1A19.1 (2)
C12B—C4B—C5B—C13B175.0 (2)N2—Cu1—N1A—C1A81.7 (2)
C3B—C4B—C5B—C13B6.4 (4)N1B—Cu1—N1A—C1A93.7 (2)
C4—C5—C6—C74.5 (4)N1—Cu1—N1A—C12A61.1 (7)
C13—C5—C6—C7176.1 (3)N2A—Cu1—N1A—C12A8.18 (17)
C4—C5—C6—C14175.3 (3)N2B—Cu1—N1A—C12A155.17 (17)
C13—C5—C6—C144.1 (4)N2—Cu1—N1A—C12A104.05 (17)
C4A—C5A—C6A—C7A2.6 (4)N1B—Cu1—N1A—C12A80.50 (17)
C13A—C5A—C6A—C7A175.6 (2)C2B—C1B—N1B—C12B0.4 (4)
C4A—C5A—C6A—C14A177.6 (2)C2B—C1B—N1B—Cu1169.13 (18)
C13A—C5A—C6A—C14A4.2 (4)C4B—C12B—N1B—C1B0.3 (3)
C4B—C5B—C6B—C7B5.0 (4)C11B—C12B—N1B—C1B179.0 (2)
C13B—C5B—C6B—C7B174.6 (2)C4B—C12B—N1B—Cu1171.30 (17)
C4B—C5B—C6B—C14B175.4 (2)C11B—C12B—N1B—Cu19.3 (2)
C13B—C5B—C6B—C14B5.1 (4)N1—Cu1—N1B—C1B93.7 (2)
C5—C6—C7—C111.9 (4)N1A—Cu1—N1B—C1B81.8 (2)
C14—C6—C7—C11177.9 (2)N2A—Cu1—N1B—C1B1.1 (2)
C5—C6—C7—C8178.4 (2)N2B—Cu1—N1B—C1B178.1 (2)
C14—C6—C7—C81.8 (4)N2—Cu1—N1B—C1B165.8 (7)
C5A—C6A—C7A—C11A2.2 (4)N1—Cu1—N1B—C12B96.13 (15)
C14A—C6A—C7A—C11A177.9 (2)N1A—Cu1—N1B—C12B88.35 (15)
C5A—C6A—C7A—C8A177.3 (3)N2A—Cu1—N1B—C12B169.08 (15)
C14A—C6A—C7A—C8A2.6 (4)N2B—Cu1—N1B—C12B7.95 (14)
C5B—C6B—C7B—C8B177.8 (2)N2—Cu1—N1B—C12B24.1 (8)
C14B—C6B—C7B—C8B1.8 (4)C9—C10—N2—C110.4 (4)
C5B—C6B—C7B—C11B0.2 (4)C9—C10—N2—Cu1172.33 (19)
C14B—C6B—C7B—C11B179.8 (2)C7—C11—N2—C100.7 (4)
C11—C7—C8—C90.1 (4)C12—C11—N2—C10177.2 (2)
C6—C7—C8—C9179.7 (3)C7—C11—N2—Cu1174.89 (19)
C11A—C7A—C8A—C9A0.3 (4)C12—C11—N2—Cu13.0 (3)
C6A—C7A—C8A—C9A179.8 (2)N1—Cu1—N2—C10174.6 (2)
C11B—C7B—C8B—C9B0.4 (4)N1A—Cu1—N2—C100.4 (2)
C6B—C7B—C8B—C9B177.7 (2)N2A—Cu1—N2—C1080.8 (2)
C7—C8—C9—C101.1 (4)N2B—Cu1—N2—C1096.6 (2)
C7A—C8A—C9A—C10A0.4 (4)N1B—Cu1—N2—C10112.4 (8)
C7B—C8B—C9B—C10B1.6 (4)N1—Cu1—N2—C111.53 (16)
C8—C9—C10—N21.3 (4)N1A—Cu1—N2—C11173.53 (16)
C8A—C9A—C10A—N2A0.7 (4)N2A—Cu1—N2—C1192.28 (17)
C8B—C9B—C10B—N2B1.9 (4)N2B—Cu1—N2—C1190.31 (16)
C8—C7—C11—N20.9 (4)N1B—Cu1—N2—C1174.5 (8)
C6—C7—C11—N2179.4 (2)C9A—C10A—N2A—C11A0.3 (4)
C8—C7—C11—C12177.0 (2)C9A—C10A—N2A—Cu1170.8 (2)
C6—C7—C11—C122.8 (4)C7A—C11A—N2A—C10A0.4 (4)
C8A—C7A—C11A—N2A0.7 (4)C12A—C11A—N2A—C10A179.3 (2)
C6A—C7A—C11A—N2A179.7 (2)C7A—C11A—N2A—Cu1173.1 (2)
C8A—C7A—C11A—C12A179.0 (2)C12A—C11A—N2A—Cu16.6 (3)
C6A—C7A—C11A—C12A0.6 (4)N1—Cu1—N2A—C10A6.1 (2)
C8B—C7B—C11B—N2B2.3 (3)N1A—Cu1—N2A—C10A179.6 (2)
C6B—C7B—C11B—N2B175.8 (2)N2B—Cu1—N2A—C10A103.7 (3)
C8B—C7B—C11B—C12B176.8 (2)N2—Cu1—N2A—C10A85.0 (2)
C6B—C7B—C11B—C12B5.1 (3)N1B—Cu1—N2A—C10A93.9 (2)
C3—C4—C12—N11.5 (4)N1—Cu1—N2A—C11A177.71 (17)
C5—C4—C12—N1177.1 (2)N1A—Cu1—N2A—C11A7.98 (16)
C3—C4—C12—C11179.4 (2)N2B—Cu1—N2A—C11A67.9 (3)
C5—C4—C12—C112.0 (4)N2—Cu1—N2A—C11A103.45 (17)
N2—C11—C12—N13.5 (3)N1B—Cu1—N2A—C11A77.67 (17)
C7—C11—C12—N1174.5 (2)C9B—C10B—N2B—C11B0.1 (4)
N2—C11—C12—C4177.3 (2)C9B—C10B—N2B—Cu1179.75 (19)
C7—C11—C12—C44.6 (4)C7B—C11B—N2B—C10B2.1 (3)
C3A—C4A—C12A—N1A1.5 (4)C12B—C11B—N2B—C10B177.0 (2)
C5A—C4A—C12A—N1A179.5 (2)C7B—C11B—N2B—Cu1178.07 (17)
C3A—C4A—C12A—C11A179.4 (2)C12B—C11B—N2B—Cu12.8 (3)
C5A—C4A—C12A—C11A0.4 (4)N1—Cu1—N2B—C10B73.80 (19)
N2A—C11A—C12A—N1A0.2 (3)N1A—Cu1—N2B—C10B102.00 (19)
C7A—C11A—C12A—N1A179.9 (2)N2A—Cu1—N2B—C10B175.8 (2)
N2A—C11A—C12A—C4A179.0 (2)N2—Cu1—N2B—C10B4.52 (19)
C7A—C11A—C12A—C4A0.7 (4)N1B—Cu1—N2B—C10B174.1 (2)
C3B—C4B—C12B—N1B0.0 (3)N1—Cu1—N2B—C11B106.03 (17)
C5B—C4B—C12B—N1B178.7 (2)N1A—Cu1—N2B—C11B78.17 (17)
C3B—C4B—C12B—C11B179.4 (2)N2A—Cu1—N2B—C11B4.4 (4)
C5B—C4B—C12B—C11B0.7 (3)N2—Cu1—N2B—C11B175.65 (15)
N2B—C11B—C12B—N1B5.2 (3)N1B—Cu1—N2B—C11B5.73 (15)
C7B—C11B—C12B—N1B174.0 (2)F2—P1—F1—F10.00 (4)
N2B—C11B—C12B—C4B175.4 (2)F6—P1—F1—F10 (7)
C7B—C11B—C12B—C4B5.4 (3)F3—P1—F1—F10.00 (4)
C2—C1—N1—C121.0 (4)F4—P1—F1—F10.00 (4)
C2—C1—N1—Cu1177.38 (19)F5—P1—F1—F10.00 (4)
C4—C12—N1—C10.3 (4)Cu1—N1—N2—N1A3.13 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F10.952.33.149 (3)148
C1A—H1A···N3i0.952.743.489 (5)136
C9—H9···F11i0.952.623.270 (3)126
C10—H10···F7i0.952.543.358 (3)145
C10—H10···F8i0.952.593.471 (3)155
C59—H59C···F4ii0.982.33.265 (4)170
C8B—H8B···F1iii0.952.513.437 (3)164
C3—H3···F8iv0.952.473.392 (3)163
C3A—H3A···F4v0.952.623.557 (3)169
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C14H12N2)3](PF6)2·C2H3N
Mr1019.3
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)9.8566 (3), 19.9317 (7), 22.1822 (6)
β (°) 93.603 (3)
V3)4349.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.34 × 0.21 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur, Atlas, Gemini
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.643, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
20467, 8596, 5782
Rint0.037
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 0.92
No. of reflections8596
No. of parameters602
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 0.42

Computer programs: CrysAlis CCD (Oxford Diffraction (2009), CrysAlis RED (Oxford Diffraction 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—N12.0063 (19)Cu1—N2B2.095 (2)
Cu1—N1A2.0144 (19)Cu1—N22.220 (2)
Cu1—N2A2.091 (2)Cu1—N1B2.333 (2)
N1A—Cu1—N2A80.60 (8)N2B—Cu1—N1B75.18 (8)
N1—Cu1—N278.35 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F10.952.33.149 (3)147.8
C1A—H1A···N3i0.952.743.489 (5)136
C9—H9···F11i0.952.623.270 (3)125.8
C10—H10···F7i0.952.543.358 (3)144.5
C10—H10···F8i0.952.593.471 (3)154.9
C59—H59C···F4ii0.982.33.265 (4)170
C8B—H8B···F1iii0.952.513.437 (3)164.3
C3—H3···F8iv0.952.473.392 (3)162.6
C3A—H3A···F4v0.952.623.557 (3)168.9
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank CONACYT 87806, PAPIIT IN 227110 and PICSA10-61 for their financial support of this work. MFA is indebted to Dr A. L. Maldonado-Hermenegildo for useful comments.

References

First citationBencini, A. & Lippolis, V. (2010). Coord. Chem. Rev. 254, 2096–2180.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMurphy, B., Aljabri, M., Mohamed Ahmed, A., Murphy, G., Hathway, B. J., Light, M. E., Geilbrich, T. & Hursthouse, M. B. (2006). Dalton Trans. pp. 357–367.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRamakrishnan, S. & Palaniandavar, M. (2008). Dalton Trans. pp. 3866–3878.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds