metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-methyl­morpholin-4-ium) tetra­bromidozincate(II)

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China, and bAnyang Administration of Work Safety, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitpch@yahoo.com.cn

(Received 15 June 2011; accepted 5 July 2011; online 9 July 2011)

The title compound, (C5H12NO)2[ZnBr4], was synthesized by hydro­thermal reaction of ZnBr2 with 4-methyl­morpholine in a HBr/distilled water solution. Each of the two independent cations exhibits a chair conformation; the anion deviates slightly from an tetrahedral configuration. The Zn—Br distances in the anion are in the range of 2.3996 (9)–2.4247 (9) Å. All of the amine H atoms are involved in bifurcated inter­molecular N—H⋯Br hydrogen bonds, building up a trimer.

Related literature

For the preparation of amino coordination compounds, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H12NO)2[ZnBr4]

  • Mr = 589.32

  • Monoclinic, P 21 /c

  • a = 7.5000 (15) Å

  • b = 20.925 (4) Å

  • c = 12.670 (3) Å

  • β = 103.33 (3)°

  • V = 1934.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.53 mm−1

  • T = 298 K

  • 0.30 × 0.02 × 0.01 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.810, Tmax = 0.900

  • 19809 measured reflections

  • 4439 independent reflections

  • 3118 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.096

  • S = 1.07

  • 4439 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br2i 0.90 2.70 3.427 (4) 138
N1—H1⋯Br3i 0.90 2.87 3.541 (4) 132
N2—H2⋯Br4 0.90 2.72 3.504 (4) 147
N2—H2⋯Br1 0.90 3.08 3.714 (4) 129
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The amino derivatives have found wide range of applications in material science, such as magnetic, fluorescent and dielectric behaviors. And there has been an increased interest in the preparation of amino coordination compound (Aminabhavi et al., 1986; Fu, et al. 2009). We report here the crystal structure of the title compound, Bis-(4-methylmorpholin-4-ium) tetrabromidozincate(II).

The asymmetric unit is composed of one ZnBr42- anion and two 4-methylmorpholin-4-ium cations (Fig.1). Both the amine N atoms were protonated, thus indicating two positive charge in all. And the ZnBr42- anion was showing two negative charge to make the charge balance. The geometric parameters of the title compound are in the normal range.

In the crystal structure, all the H atoms of amine groups are involved in intermolecular N—H···Br hydrogen bonds building up a trimer (Table 1 and Fig.2).

Related literature top

For the preparation of amino coordination compounds, see: Fu et al. (2009); Aminabhavi et al. (1986).

Experimental top

A mixture of 4-methylmorpholine (0.4 mmol), ZnBr2 (0.4 mmol) and HBr/distilled water (10ml,1:3) sealed in a Teflon-lined stainless steel vessel, was maintained at 100 °C. Colorless needle crystals suitable for X-ray analysis were obtained after 3 days.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.97 Å(methylene) and C-H = 0.96 Å(methyl) with Uiso(H) = 1.2Ueq(methylene) and Uiso(H) = 1.5Ueq(methyl). The positional parameters of the H atoms (N1, N2) were refined freely. And in the last stage of the refinement, it were restrained with the H—N = 0.90 (2)Å), with Uiso(H)=1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis showing the one-dimensionnal hydrogen bondings chain (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Bis(4-methylmorpholin-4-ium) tetrabromidozincate(II) top
Crystal data top
(C5H12NO)2[ZnBr4]F(000) = 1136
Mr = 589.32Dx = 2.023 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4439 reflections
a = 7.5000 (15) Åθ = 3.1–27.5°
b = 20.925 (4) ŵ = 9.53 mm1
c = 12.670 (3) ÅT = 298 K
β = 103.33 (3)°Needle, colorless
V = 1934.8 (7) Å30.30 × 0.02 × 0.01 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
4439 independent reflections
Radiation source: fine-focus sealed tube3118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2727
Tmin = 0.810, Tmax = 0.900l = 1616
19809 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.024P)2 + 1.999P]
where P = (Fo2 + 2Fc2)/3
4439 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
(C5H12NO)2[ZnBr4]V = 1934.8 (7) Å3
Mr = 589.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5000 (15) ŵ = 9.53 mm1
b = 20.925 (4) ÅT = 298 K
c = 12.670 (3) Å0.30 × 0.02 × 0.01 mm
β = 103.33 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4439 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3118 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.900Rint = 0.079
19809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.07Δρmax = 0.58 e Å3
4439 reflectionsΔρmin = 0.78 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.13367 (8)0.63934 (3)0.72630 (5)0.03501 (16)
N10.0938 (5)0.54509 (19)1.2863 (3)0.0349 (10)
H10.08250.50231.28190.042*
Br20.10482 (8)0.59847 (3)0.58209 (4)0.04782 (17)
Br30.11003 (9)0.58049 (3)0.88737 (4)0.04937 (18)
C30.2234 (8)0.5701 (3)1.3845 (4)0.0463 (14)
H3A0.19170.55321.44910.056*
H3B0.21440.61631.38640.056*
Br40.43069 (7)0.62464 (3)0.68930 (5)0.04825 (17)
Br10.11182 (10)0.75261 (3)0.75420 (6)0.0650 (2)
O10.4678 (5)0.57277 (19)1.2887 (3)0.0552 (11)
C50.0990 (8)0.5644 (3)1.2811 (5)0.0537 (16)
H5A0.13490.54951.34480.081*
H5B0.17780.54591.21790.081*
H5C0.10860.61011.27720.081*
C40.4175 (8)0.5510 (3)1.3833 (4)0.0507 (15)
H4A0.50110.56881.44650.061*
H4B0.42820.50491.38730.061*
C20.1551 (7)0.5645 (2)1.1864 (4)0.0379 (13)
H2A0.14320.61041.17680.045*
H2B0.07800.54411.12330.045*
C10.3508 (8)0.5452 (3)1.1963 (5)0.0505 (15)
H1A0.36040.49901.20130.061*
H1B0.38960.55851.13180.061*
N20.5985 (6)0.7329 (2)0.8998 (3)0.0390 (10)
H20.51050.71180.85220.047*
O20.6025 (7)0.6575 (2)1.0880 (3)0.0724 (14)
C80.5215 (9)0.7569 (3)0.9907 (5)0.0528 (16)
H8A0.41790.78470.96260.063*
H8B0.61360.78141.04080.063*
C90.4608 (9)0.7010 (3)1.0494 (5)0.0628 (19)
H9A0.41460.71681.10990.075*
H9B0.36130.67901.00040.075*
C70.7407 (9)0.6834 (3)0.9412 (5)0.0641 (18)
H7A0.78240.66480.88100.077*
H7B0.84510.70310.98990.077*
C100.6659 (10)0.7853 (3)0.8407 (5)0.0680 (19)
H10A0.71120.76780.78190.102*
H10B0.76280.80770.88930.102*
H10C0.56730.81430.81260.102*
C60.6643 (11)0.6325 (3)0.9995 (6)0.076 (2)
H6A0.56300.61180.94980.091*
H6B0.75780.60061.02540.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0398 (3)0.0309 (3)0.0357 (3)0.0033 (3)0.0116 (3)0.0006 (3)
N10.043 (2)0.029 (2)0.033 (2)0.0024 (19)0.0091 (19)0.0058 (19)
Br20.0445 (3)0.0533 (4)0.0409 (3)0.0084 (3)0.0002 (3)0.0049 (3)
Br30.0710 (4)0.0452 (3)0.0344 (3)0.0144 (3)0.0171 (3)0.0006 (3)
C30.058 (4)0.045 (3)0.034 (3)0.006 (3)0.007 (3)0.004 (3)
Br40.0418 (3)0.0538 (4)0.0530 (4)0.0060 (3)0.0189 (3)0.0008 (3)
Br10.0816 (5)0.0295 (3)0.0932 (5)0.0003 (3)0.0392 (4)0.0060 (3)
O10.047 (2)0.064 (3)0.054 (3)0.016 (2)0.011 (2)0.010 (2)
C50.046 (3)0.062 (4)0.057 (4)0.011 (3)0.019 (3)0.010 (3)
C40.050 (4)0.055 (4)0.042 (3)0.008 (3)0.001 (3)0.010 (3)
C20.051 (3)0.032 (3)0.031 (3)0.007 (2)0.009 (2)0.004 (2)
C10.058 (4)0.052 (4)0.045 (3)0.009 (3)0.018 (3)0.005 (3)
N20.043 (3)0.039 (3)0.033 (2)0.004 (2)0.007 (2)0.002 (2)
O20.102 (4)0.071 (3)0.043 (3)0.001 (3)0.015 (3)0.015 (2)
C80.060 (4)0.053 (4)0.049 (4)0.001 (3)0.021 (3)0.014 (3)
C90.073 (5)0.074 (5)0.049 (4)0.025 (4)0.029 (3)0.015 (4)
C70.058 (4)0.075 (5)0.062 (4)0.024 (4)0.018 (3)0.012 (4)
C100.092 (5)0.058 (4)0.060 (4)0.023 (4)0.029 (4)0.010 (3)
C60.099 (6)0.062 (5)0.066 (5)0.027 (4)0.019 (4)0.019 (4)
Geometric parameters (Å, º) top
Zn1—Br42.3996 (9)C1—H1A0.9700
Zn1—Br22.4005 (11)C1—H1B0.9700
Zn1—Br12.4075 (9)N2—C101.480 (7)
Zn1—Br32.4247 (9)N2—C81.490 (6)
N1—C31.487 (6)N2—C71.493 (7)
N1—C51.488 (7)N2—H20.9002
N1—C21.499 (6)O2—C91.398 (8)
N1—H10.9000O2—C61.409 (8)
C3—C41.513 (8)C8—C91.511 (8)
C3—H3A0.9700C8—H8A0.9700
C3—H3B0.9700C8—H8B0.9700
O1—C41.412 (6)C9—H9A0.9700
O1—C11.414 (7)C9—H9B0.9700
C5—H5A0.9600C7—C61.484 (9)
C5—H5B0.9600C7—H7A0.9700
C5—H5C0.9600C7—H7B0.9700
C4—H4A0.9700C10—H10A0.9600
C4—H4B0.9700C10—H10B0.9600
C2—C11.499 (7)C10—H10C0.9600
C2—H2A0.9700C6—H6A0.9700
C2—H2B0.9700C6—H6B0.9700
Br4—Zn1—Br2111.59 (4)O1—C1—H1B109.3
Br4—Zn1—Br1104.63 (3)C2—C1—H1B109.3
Br2—Zn1—Br1113.48 (3)H1A—C1—H1B108.0
Br4—Zn1—Br3110.52 (4)C10—N2—C8112.3 (5)
Br2—Zn1—Br3105.87 (3)C10—N2—C7113.1 (5)
Br1—Zn1—Br3110.84 (3)C8—N2—C7109.6 (4)
C3—N1—C5112.5 (4)C10—N2—H2107.9
C3—N1—C2110.1 (4)C8—N2—H2109.1
C5—N1—C2111.9 (4)C7—N2—H2104.5
C3—N1—H1115.9C9—O2—C6109.0 (5)
C5—N1—H1101.0N2—C8—C9109.5 (5)
C2—N1—H1105.0N2—C8—H8A109.8
N1—C3—C4110.1 (4)C9—C8—H8A109.8
N1—C3—H3A109.6N2—C8—H8B109.8
C4—C3—H3A109.6C9—C8—H8B109.8
N1—C3—H3B109.6H8A—C8—H8B108.2
C4—C3—H3B109.6O2—C9—C8112.6 (5)
H3A—C3—H3B108.2O2—C9—H9A109.1
C4—O1—C1109.5 (4)C8—C9—H9A109.1
N1—C5—H5A109.5O2—C9—H9B109.1
N1—C5—H5B109.5C8—C9—H9B109.1
H5A—C5—H5B109.5H9A—C9—H9B107.8
N1—C5—H5C109.5C6—C7—N2110.3 (5)
H5A—C5—H5C109.5C6—C7—H7A109.6
H5B—C5—H5C109.5N2—C7—H7A109.6
O1—C4—C3111.7 (4)C6—C7—H7B109.6
O1—C4—H4A109.3N2—C7—H7B109.6
C3—C4—H4A109.3H7A—C7—H7B108.1
O1—C4—H4B109.3N2—C10—H10A109.5
C3—C4—H4B109.3N2—C10—H10B109.5
H4A—C4—H4B107.9H10A—C10—H10B109.5
N1—C2—C1109.9 (4)N2—C10—H10C109.5
N1—C2—H2A109.7H10A—C10—H10C109.5
C1—C2—H2A109.7H10B—C10—H10C109.5
N1—C2—H2B109.7O2—C6—C7111.4 (6)
C1—C2—H2B109.7O2—C6—H6A109.3
H2A—C2—H2B108.2C7—C6—H6A109.3
O1—C1—C2111.6 (5)O2—C6—H6B109.3
O1—C1—H1A109.3C7—C6—H6B109.3
C2—C1—H1A109.3H6A—C6—H6B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br2i0.902.703.427 (4)138
N1—H1···Br3i0.902.873.541 (4)132
N2—H2···Br40.902.723.504 (4)147
N2—H2···Br10.903.083.714 (4)129
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula(C5H12NO)2[ZnBr4]
Mr589.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.5000 (15), 20.925 (4), 12.670 (3)
β (°) 103.33 (3)
V3)1934.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)9.53
Crystal size (mm)0.30 × 0.02 × 0.01
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.810, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
19809, 4439, 3118
Rint0.079
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.096, 1.07
No. of reflections4439
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.78

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br2i0.902.703.427 (4)138
N1—H1···Br3i0.902.873.541 (4)132
N2—H2···Br40.902.723.504 (4)147
N2—H2···Br10.903.083.714 (4)129
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

This work was supported by the start-up fund of Anyang Institute of Technology.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.  CrossRef CAS Web of Science Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.   Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds