metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m529-m530

Yttrium ethyl­enedi­ammonium squarate tetra­hydrate

aFaculté des Sciences et Technologie et Sciences de la Matière, Université Kasdi Merbah Ouargla, Route Gardaia, Ourgla, Algeria, and bLaboratoire Sciences Chimiques de Rennes (CNRS, UMR 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: louizazenkhri@yahoo.fr

(Received 7 March 2011; accepted 25 March 2011; online 7 April 2011)

The title compound, {(C2H10N2)1.5[Y(C4O4)3(H2O)4]}n {system­atic name: catena-poly[sesqui(ethyl­enediammonium) [[tetra­aquabis­(squarato-κO)yttrium(III)]-μ-squarato-κ2O:O′]]}, was synthesized by slow evaporation of an acid solution. The asymetric unit contains one yttrium cation in an anti­prismatic environnement, three squarate groups, one and a half protonated ethyl­enediamine mol­ecules and four water mol­ecules. YO8 polyhedra are connected through bis­(mono­dentate) squarates, leading to infinite zigzag chains, in between which are located ammonium groups. A framework of hydrogen bonds between protonated amine N atoms, water mol­ecules and squarate anions ensures the cohesion of the structure.

Related literature

For a related structure, see: Kazerouni et al. (1994)[Kazerouni, M. R., Hedberg, L. & Hedberg, K. (1994). J. Am. Chem. Soc. 116, 5279-5284.]. The title compound was obtained together with two polymorphs of (C2H10N2)(HC4O4)2(H2O) (Mathew et al., 2002[Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263-279.]; Zenkhri et al., 2011)[Zenkhri, L., Bataille, T. & Audebrand, N. (2011). Acta Cryst. E67, o1118.]. For related yttrium squarates with potassium, see: Mahé & Bataille (2004[Mahé, N. & Bataille, T. (2004). Inorg. Chem. 43, 8379-8386.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H10N2)1.5[Y(C4O4)3(H2O)4]

  • Mr = 590.27

  • Monoclinic, P 21 /c

  • a = 8.9780 (2) Å

  • b = 13.2864 (3) Å

  • c = 18.3970 (4) Å

  • β = 90.935 (1)°

  • V = 2194.20 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.75 mm−1

  • T = 293 K

  • 0.22 × 0.14 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965)[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.] Tmin = 0.583, Tmax = 0.734

  • 23285 measured reflections

  • 5016 independent reflections

  • 4140 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.10

  • 5016 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 1.77 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H12⋯O3i 0.87 2.21 3.027 (4) 157
N1—H12⋯O9ii 0.87 2.36 2.929 (4) 123
N1—H11⋯O4i 0.87 2.36 2.995 (4) 131
N1—H11⋯O7ii 0.87 2.28 2.987 (4) 138
N1—H13⋯O6ii 0.87 2.36 2.970 (4) 127
N1—H13⋯O12ii 0.87 2.26 3.032 (4) 148
N2—H23⋯O2 0.85 1.87 2.707 (4) 167
N2—H21⋯O4i 0.96 1.92 2.832 (4) 159
N2—H21⋯O7ii 0.96 2.46 2.952 (4) 112
N2—H22⋯O5iii 0.95 2.01 2.929 (4) 163
N3—H31⋯O4 0.87 2.22 2.843 (4) 129
N3—H32⋯O8iv 0.87 2.18 2.788 (4) 127
N3—H33⋯OW1v 0.87 2.40 2.997 (4) 126
OW1—H911⋯O11v 0.94 1.74 2.676 (3) 175
OW1—H912⋯O5 0.93 1.78 2.687 (3) 166
OW2—H922⋯O11 0.94 1.95 2.885 (4) 173
OW2—H921⋯O10v 0.94 1.79 2.726 (3) 179
OW3—H931⋯O8vi 0.93 1.94 2.857 (4) 172
OW3—H932⋯O1i 0.94 2.04 2.954 (5) 163
OW4—H942⋯O5vi 0.92 1.86 2.779 (3) 172
OW4—H941⋯O10vii 0.93 1.86 2.761 (4) 163
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT, Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the course of a study on mixed squarate of amines and metals, the role of the amine group has been investigated in the topology of the organic-inorganic framework. The synthesis led to a new mixed squarate of yttrium and ethylenediamine.

Yttrium is eightfold coordinated in the shape of a square antiprism. YO8 polyhedra are connected along the b axis through bis(monodentate) squarates in the form of zigzag chains (Figures 1, 2). Amine groups are located between the chains (Figure 2) and are connected to them through hydrogen bonds involving oxygen atoms from squarate groups (Table 1). Other hydrogen bonds between water molecules and squarate groups contribute also to the formation of a three-dimensional molecular framework (Table 1). One ethylenediammonium possesses a gauche conformation as already reported for this molecule (Kazerouni et al., 1994).

Related literature top

For a related structure, see: Kazerouni et al. (1994). The title compound was obtained together with together with two polymorphs of (HC4O4)2(C2H10N2)(H2O) (Mathew et al., 2002; Zenkhri et al., 2011). For related literature [on what subject?], see: Mahé & Bataille (2004). Scheme – is an extra bond needed extending out of the square brackets to show the connectivity?

Experimental top

The title compound, Y(C4O4)3(C2H10N2)1.54H2O was prepared from an aquous solution (20 ml) of dissolved yttrium nitrate (0.5 mmol), ethylenediamine (0.1 mmol) and 3,4-dihydroxy-3-cyclobutene-1,2-dione, also named squaric acid (0.1 mmol). The slow evaporation at room temperature leads after some hours to the formation of the title compound together with two polymorphs of (HC4O4)2(C2H10N2)(H2O) (Mathew et al., 2002; Zenkhri et al.., 2011).

Refinement top

All H atoms were found from Fourier difference maps. H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.97 Å with Uiso(H) = 1.2Ueq. As H atoms attached to N and O are not geometrically tightened, they were refined using restraints of N–H = 0.89 (1)Å and O–H = 0.97 (1)Å with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O), respectively. In the last cycles of refinement, they were treated as riding on their parent atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound. Ellipsoids are shown at the 50% probability level. (i) 1 - x, -1 - y, 2 - z; (ii) 2 - x, -1/2 + y, 3/2 - z.
[Figure 2] Fig. 2. View of the structure of the title compound along the a axis displaying chains alternating with amine groups.
catena-poly[sesqui(ethylenediammonium) [[tetraaquabis(squarato-κO)yttrium(III)]-µ-squarato- κ2O:O']] top
Crystal data top
(C2H10N2)1.5[Y(C4O4)3(H2O)4]F(000) = 1204
Mr = 590.27Dx = 1.787 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9780 (2) ÅCell parameters from 57148 reflections
b = 13.2864 (3) Åθ = 2.9–27.5°
c = 18.3970 (4) ŵ = 2.75 mm1
β = 90.935 (1)°T = 293 K
V = 2194.20 (8) Å3Prism, colourless
Z = 40.22 × 0.14 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
5016 independent reflections
Radiation source: fine-focus sealed tube4140 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.065
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD scansh = 1111
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 1717
Tmin = 0.583, Tmax = 0.734l = 2323
23285 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0368P)2 + 4.9093P]
where P = (Fo2 + 2Fc2)/3
5016 reflections(Δ/σ)max = 0.002
316 parametersΔρmax = 1.77 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
(C2H10N2)1.5[Y(C4O4)3(H2O)4]V = 2194.20 (8) Å3
Mr = 590.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9780 (2) ŵ = 2.75 mm1
b = 13.2864 (3) ÅT = 293 K
c = 18.3970 (4) Å0.22 × 0.14 × 0.12 mm
β = 90.935 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5016 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
4140 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.734Rint = 0.065
23285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.10Δρmax = 1.77 e Å3
5016 reflectionsΔρmin = 0.62 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.81967 (3)0.09385 (2)0.775395 (16)0.01739 (9)
OW10.6982 (2)0.02399 (18)0.69447 (13)0.0255 (5)
H9110.61560.06260.70850.038*
H9120.76470.07200.67850.038*
OW20.5760 (3)0.15385 (18)0.74497 (16)0.0332 (6)
H9210.47740.13030.74460.050*
H9220.55680.22160.75500.050*
OW30.7609 (4)0.1825 (2)0.88343 (19)0.0653 (12)
H9310.78800.23760.91160.098*
H9320.73450.14470.92430.098*
OW41.0544 (3)0.16009 (19)0.82212 (15)0.0332 (6)
H9411.14510.14380.80130.050*
H9421.06230.22670.83560.050*
C10.3965 (4)0.0751 (3)0.9370 (2)0.0344 (9)
O10.2824 (3)0.0919 (3)0.97182 (19)0.0618 (10)
C20.4625 (4)0.0166 (3)0.90558 (19)0.0308 (8)
O20.4298 (4)0.1078 (2)0.90299 (18)0.0567 (9)
C30.5884 (4)0.0427 (2)0.88126 (17)0.0215 (6)
O30.7096 (2)0.02378 (17)0.84855 (13)0.0260 (5)
C40.5259 (4)0.1337 (3)0.91110 (19)0.0270 (7)
O40.5696 (3)0.2235 (2)0.91517 (16)0.0389 (6)
C50.9863 (4)0.0763 (2)0.60978 (17)0.0212 (6)
O50.8971 (3)0.14412 (17)0.62986 (14)0.0283 (5)
C61.0043 (4)0.0306 (2)0.62387 (17)0.0212 (6)
O60.9443 (3)0.09575 (17)0.66401 (13)0.0278 (5)
C71.1316 (4)0.0349 (2)0.57414 (18)0.0228 (6)
O71.2148 (3)0.10214 (18)0.55251 (16)0.0356 (6)
C81.1158 (4)0.0751 (2)0.56315 (18)0.0227 (7)
O81.1858 (3)0.14202 (19)0.53033 (16)0.0368 (6)
C90.8814 (3)0.4399 (2)0.72880 (17)0.0190 (6)
O91.0131 (2)0.46219 (16)0.71244 (13)0.0244 (5)
C100.7446 (4)0.4939 (2)0.74815 (18)0.0225 (6)
O100.7095 (3)0.58392 (18)0.75490 (17)0.0360 (6)
C110.6683 (3)0.3960 (2)0.75669 (18)0.0216 (6)
O110.5417 (3)0.3661 (2)0.77318 (16)0.0351 (6)
C120.8066 (3)0.3451 (2)0.73838 (17)0.0203 (6)
O120.8488 (3)0.25554 (17)0.73267 (15)0.0316 (6)
N10.1150 (3)0.2173 (2)1.13530 (16)0.0276 (6)
H110.18630.25791.12300.033*
H120.15310.16151.15200.033*
H130.06180.24541.16880.033*
C130.0190 (4)0.1952 (3)1.0706 (2)0.0315 (8)
H1310.01920.25811.05110.038*
H1320.06540.15531.08580.038*
C140.0985 (4)0.1398 (3)1.0114 (2)0.0317 (8)
H1410.14880.08171.03230.038*
H1420.02570.11560.97600.038*
N20.2096 (3)0.2041 (2)0.97398 (16)0.0300 (7)
H210.27780.22781.01070.036*
H220.16070.25610.94770.036*
H230.26830.17170.94640.036*
N30.4125 (4)0.4070 (3)0.93482 (18)0.0392 (8)
H310.47740.37790.90720.047*
H320.39400.36850.97180.047*
H330.33060.41750.91000.047*
C150.4730 (4)0.5043 (3)0.9610 (2)0.0348 (9)
H1510.55500.52460.93060.042*
H1520.39630.55550.95740.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.01584 (14)0.01229 (13)0.02423 (15)0.00006 (11)0.00636 (10)0.00037 (12)
OW10.0212 (11)0.0241 (12)0.0313 (12)0.0036 (9)0.0061 (9)0.0030 (10)
OW20.0161 (11)0.0211 (12)0.0625 (18)0.0014 (9)0.0049 (11)0.0036 (12)
OW30.099 (3)0.0388 (17)0.060 (2)0.0325 (18)0.055 (2)0.0255 (15)
OW40.0302 (13)0.0235 (12)0.0456 (16)0.0003 (10)0.0048 (11)0.0100 (11)
C10.0197 (16)0.058 (3)0.0259 (18)0.0034 (16)0.0021 (13)0.0039 (16)
O10.0269 (15)0.104 (3)0.055 (2)0.0107 (17)0.0177 (14)0.011 (2)
C20.0284 (18)0.042 (2)0.0228 (17)0.0099 (16)0.0066 (14)0.0032 (15)
O20.068 (2)0.0505 (19)0.0524 (19)0.0358 (17)0.0266 (17)0.0089 (15)
C30.0219 (15)0.0236 (16)0.0190 (15)0.0011 (13)0.0032 (12)0.0002 (12)
O30.0234 (11)0.0234 (12)0.0317 (13)0.0022 (9)0.0116 (10)0.0058 (10)
C40.0217 (16)0.0335 (18)0.0257 (17)0.0081 (14)0.0004 (13)0.0042 (14)
O40.0408 (15)0.0259 (13)0.0498 (17)0.0086 (12)0.0008 (13)0.0090 (12)
C50.0258 (16)0.0155 (14)0.0224 (15)0.0002 (12)0.0017 (12)0.0011 (11)
O50.0297 (12)0.0183 (11)0.0373 (14)0.0060 (10)0.0110 (10)0.0002 (10)
C60.0249 (15)0.0158 (14)0.0232 (16)0.0003 (12)0.0055 (12)0.0006 (12)
O60.0352 (13)0.0170 (11)0.0317 (13)0.0019 (10)0.0166 (10)0.0012 (10)
C70.0238 (16)0.0182 (15)0.0265 (16)0.0022 (12)0.0068 (13)0.0024 (12)
O70.0364 (14)0.0196 (12)0.0517 (16)0.0027 (11)0.0238 (12)0.0033 (11)
C80.0243 (16)0.0182 (15)0.0258 (16)0.0005 (12)0.0025 (13)0.0006 (12)
O80.0382 (14)0.0227 (13)0.0500 (17)0.0037 (11)0.0193 (12)0.0081 (11)
C90.0183 (14)0.0160 (14)0.0229 (15)0.0008 (11)0.0034 (12)0.0004 (12)
O90.0177 (11)0.0168 (11)0.0390 (14)0.0030 (9)0.0086 (9)0.0019 (10)
C100.0195 (15)0.0193 (15)0.0289 (17)0.0032 (12)0.0023 (12)0.0001 (13)
O100.0253 (12)0.0161 (12)0.0668 (19)0.0064 (10)0.0064 (12)0.0027 (12)
C110.0174 (14)0.0193 (15)0.0282 (16)0.0020 (12)0.0045 (12)0.0017 (13)
O110.0181 (11)0.0275 (13)0.0602 (18)0.0025 (10)0.0131 (11)0.0071 (12)
C120.0185 (14)0.0177 (14)0.0247 (16)0.0015 (12)0.0040 (12)0.0036 (12)
O120.0275 (12)0.0132 (11)0.0546 (16)0.0009 (9)0.0149 (11)0.0046 (11)
N10.0320 (15)0.0198 (13)0.0314 (16)0.0027 (12)0.0110 (12)0.0010 (12)
C130.0216 (16)0.0338 (19)0.039 (2)0.0014 (14)0.0029 (14)0.0051 (16)
C140.040 (2)0.0239 (17)0.0309 (19)0.0005 (15)0.0044 (15)0.0000 (14)
N20.0353 (16)0.0283 (15)0.0267 (15)0.0109 (13)0.0061 (12)0.0009 (12)
N30.0367 (18)0.046 (2)0.0351 (17)0.0108 (16)0.0085 (14)0.0034 (15)
C150.0296 (18)0.044 (2)0.031 (2)0.0111 (16)0.0079 (15)0.0092 (16)
Geometric parameters (Å, º) top
Y1—O32.297 (2)C8—O81.250 (4)
Y1—O122.304 (2)C9—O91.261 (4)
Y1—O9i2.314 (2)C9—C121.439 (4)
Y1—O62.351 (2)C9—C101.471 (4)
Y1—OW32.377 (3)O9—Y1ii2.314 (2)
Y1—OW22.386 (2)C10—O101.244 (4)
Y1—OW12.409 (2)C10—C111.479 (4)
Y1—OW42.428 (2)C11—O111.247 (4)
OW1—H9110.9405C11—C121.458 (4)
OW1—H9120.9255C12—O121.254 (4)
OW2—H9210.9388N1—C131.487 (5)
OW2—H9220.9354N1—H110.8700
OW3—H9310.9277N1—H120.8700
OW3—H9320.9382N1—H130.8700
OW4—H9410.9307C13—C141.504 (5)
OW4—H9420.9214C13—H1310.9700
C1—O11.237 (4)C13—H1320.9700
C1—C21.476 (5)C14—N21.491 (5)
C1—C41.484 (5)C14—H1410.9700
C2—O21.249 (5)C14—H1420.9700
C2—C31.454 (5)N2—H210.9571
C3—O31.277 (4)N2—H220.9479
C3—C41.445 (5)N2—H230.8528
C4—O41.257 (5)N3—C151.479 (5)
C5—O51.265 (4)N3—H310.8700
C5—C61.453 (4)N3—H320.8700
C5—C81.456 (4)N3—H330.8700
C6—O61.264 (4)C15—C15iii1.512 (8)
C6—C71.476 (4)C15—H1510.9700
C7—O71.234 (4)C15—H1520.9700
C7—C81.482 (4)
O3—Y1—O12152.48 (8)C5—C6—C790.7 (3)
O3—Y1—O9i73.35 (8)C6—O6—Y1135.7 (2)
O12—Y1—O9i131.37 (8)O7—C7—C6134.9 (3)
O3—Y1—O6137.19 (8)O7—C7—C8136.6 (3)
O12—Y1—O668.55 (8)C6—C7—C888.4 (2)
O9i—Y1—O677.00 (8)O8—C8—C5133.6 (3)
O3—Y1—OW375.14 (9)O8—C8—C7136.0 (3)
O12—Y1—OW381.46 (10)C5—C8—C790.3 (2)
O9i—Y1—OW3116.50 (12)O9—C9—C12132.6 (3)
O6—Y1—OW3147.03 (9)O9—C9—C10137.1 (3)
O3—Y1—OW287.89 (8)C12—C9—C1090.2 (2)
O12—Y1—OW273.57 (8)C9—O9—Y1ii139.9 (2)
O9i—Y1—OW2150.02 (8)O10—C10—C9135.0 (3)
O6—Y1—OW2103.86 (9)O10—C10—C11135.7 (3)
OW3—Y1—OW279.37 (13)C9—C10—C1189.2 (2)
O3—Y1—OW174.04 (8)O11—C11—C12133.8 (3)
O12—Y1—OW1116.61 (9)O11—C11—C10137.0 (3)
O9i—Y1—OW181.66 (8)C12—C11—C1089.2 (2)
O6—Y1—OW171.68 (8)O12—C12—C9132.7 (3)
OW3—Y1—OW1137.23 (10)O12—C12—C11135.9 (3)
OW2—Y1—OW170.61 (9)C9—C12—C1191.4 (2)
O3—Y1—OW4114.74 (9)C12—O12—Y1145.1 (2)
O12—Y1—OW471.35 (9)C13—N1—H11109.5
O9i—Y1—OW471.44 (8)C13—N1—H12109.5
O6—Y1—OW483.21 (9)H11—N1—H12109.5
OW3—Y1—OW474.20 (11)C13—N1—H13109.5
OW2—Y1—OW4138.51 (9)H11—N1—H13109.5
OW1—Y1—OW4146.71 (8)H12—N1—H13109.5
Y1—OW1—H911122.4N1—C13—C14113.6 (3)
Y1—OW1—H912110.8N1—C13—H131108.8
H911—OW1—H912103.1C14—C13—H131108.8
Y1—OW2—H921138.7N1—C13—H132108.8
Y1—OW2—H922116.5C14—C13—H132108.8
H921—OW2—H92298.3H131—C13—H132107.7
Y1—OW3—H931142.9N2—C14—C13112.5 (3)
Y1—OW3—H932117.9N2—C14—H141109.1
H931—OW3—H93292.4C13—C14—H141109.1
Y1—OW4—H941122.0N2—C14—H142109.1
Y1—OW4—H942120.4C13—C14—H142109.1
H941—OW4—H942105.7H141—C14—H142107.8
O1—C1—C2133.9 (4)C14—N2—H21106.7
O1—C1—C4136.9 (4)C14—N2—H22110.2
C2—C1—C489.2 (3)H21—N2—H22113.9
O2—C2—C3134.3 (4)C14—N2—H23114.2
O2—C2—C1136.1 (3)H21—N2—H23101.0
C3—C2—C189.6 (3)H22—N2—H23110.5
O3—C3—C4133.1 (3)C15—N3—H31109.5
O3—C3—C2135.3 (3)C15—N3—H32109.5
C4—C3—C291.6 (3)H31—N3—H32109.5
C3—O3—Y1142.0 (2)C15—N3—H33109.5
O4—C4—C3133.9 (3)H31—N3—H33109.5
O4—C4—C1136.4 (3)H32—N3—H33109.5
C3—C4—C189.6 (3)N3—C15—C15iii110.7 (4)
O5—C5—C6135.6 (3)N3—C15—H151109.5
O5—C5—C8134.0 (3)C15iii—C15—H151109.5
C6—C5—C890.4 (2)N3—C15—H152109.5
O6—C6—C5136.6 (3)C15iii—C15—H152109.5
O6—C6—C7132.6 (3)H151—C15—H152108.1
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O3iv0.872.213.027 (4)157
N1—H12···O9v0.872.362.929 (4)123
N1—H11···O4iv0.872.362.995 (4)131
N1—H11···O7v0.872.282.987 (4)138
N1—H13···O6v0.872.362.970 (4)127
N1—H13···O12v0.872.263.032 (4)148
N2—H23···O20.851.872.707 (4)167
N2—H21···O4iv0.961.922.832 (4)159
N2—H21···O7v0.962.462.952 (4)112
N2—H22···O5vi0.952.012.929 (4)163
N3—H31···O40.872.222.843 (4)129
N3—H32···O8vii0.872.182.788 (4)127
N3—H33···OW1viii0.872.402.997 (4)126
OW1—H911···O11viii0.941.742.676 (3)175
OW1—H912···O50.931.782.687 (3)166
OW2—H922···O110.941.952.885 (4)173
OW2—H921···O10viii0.941.792.726 (3)179
OW3—H931···O8ii0.931.942.857 (4)172
OW3—H932···O1iv0.942.042.954 (5)163
OW4—H942···O5ii0.921.862.779 (3)172
OW4—H941···O10i0.931.862.761 (4)163
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iv) x+1, y, z+2; (v) x1, y+1/2, z+1/2; (vi) x+1, y+1/2, z+3/2; (vii) x1, y1/2, z+1/2; (viii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C2H10N2)1.5[Y(C4O4)3(H2O)4]
Mr590.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.9780 (2), 13.2864 (3), 18.3970 (4)
β (°) 90.935 (1)
V3)2194.20 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.75
Crystal size (mm)0.22 × 0.14 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.583, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
23285, 5016, 4140
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.10
No. of reflections5016
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.77, 0.62

Computer programs: COLLECT (Nonius, 2000), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 2001), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O3i0.872.213.027 (4)157
N1—H12···O9ii0.872.362.929 (4)123
N1—H11···O4i0.872.362.995 (4)131
N1—H11···O7ii0.872.282.987 (4)138
N1—H13···O6ii0.872.362.970 (4)127
N1—H13···O12ii0.872.263.032 (4)148
N2—H23···O20.851.872.707 (4)167
N2—H21···O4i0.961.922.832 (4)159
N2—H21···O7ii0.962.462.952 (4)112
N2—H22···O5iii0.952.012.929 (4)163
N3—H31···O40.872.222.843 (4)129
N3—H32···O8iv0.872.182.788 (4)127
N3—H33···OW1v0.872.402.997 (4)126
OW1—H911···O11v0.941.742.676 (3)175
OW1—H912···O50.931.782.687 (3)166
OW2—H922···O110.941.952.885 (4)173
OW2—H921···O10v0.941.792.726 (3)179
OW3—H931···O8vi0.931.942.857 (4)172
OW3—H932···O1i0.942.042.954 (5)163
OW4—H942···O5vi0.921.862.779 (3)172
OW4—H941···O10vii0.931.862.761 (4)163
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x1, y1/2, z+1/2; (v) x+1, y1/2, z+3/2; (vi) x+2, y+1/2, z+3/2; (vii) x+2, y1/2, z+3/2.
 

Acknowledgements

Grateful thanks are expressed to Dr T. Roisnel (Centre de Diffractométrie X, UMR CNRS 6226) for his assistance with the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKazerouni, M. R., Hedberg, L. & Hedberg, K. (1994). J. Am. Chem. Soc. 116, 5279–5284.  CrossRef CAS Google Scholar
First citationMahé, N. & Bataille, T. (2004). Inorg. Chem. 43, 8379–8386.  Web of Science PubMed Google Scholar
First citationMathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (2000). COLLECT, Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZenkhri, L., Bataille, T. & Audebrand, N. (2011). Acta Cryst. E67, o1118.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m529-m530
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds