Download citation
Download citation
link to html
The CdII atom has distorted pentagonal bipyramidal coord­ination geometry in the coordination polymer [Cd(TDA)(Him)2(H2O)]n [where TDA2− is the thio­phene-2,5-dicarboxyl­ate dianion (C6H2O4S2−) and Him is imidazole (C3H4N2)]. The cadmium ion is bound by four carboxylate O atoms from two independent TDA2− groups, two N atoms from two different imidazole ligands, and one water mol­ecule. The carboxyl­ate groups bind in bidentate mode to the Cd center, forming a linear chain structure such that the closest Cd...Cd distance is 10.577 (6) Å. The polymeric chains are connected via hydrogen bonds and π–π stacking inter­actions into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040341/rn6072sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040341/rn6072Isup2.hkl
Contains datablock I

CCDC reference: 296632

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.014 Å
  • R factor = 0.041
  • wR factor = 0.168
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT213_ALERT_2_C Atom O1 has ADP max/min Ratio ............. 3.50 prolat PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cd1 PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 14 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.11 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Thiophene-2,5-dicarboxylic acid (H2TDA) is reported to be a potential anticancer agent (Sahasrabudhe et al., 1960), and additionally an excellent building block for constructing coordination polymers (Chen et al., 1993). In previously studied polymers of this type, the versatile H2TDA ligand shows a variety of binding modes to metal ions, from mono- to tetradentate (Chen et al., 1998, 1999). In order to further the study of H2TDA coordination modes, we report here the synthesis and crystal structure of the title CdII coordination polymer, [Cd(TDA)(Him)2(H2O)]n, (I). It was obtained by the hydrothermal reaction of cadmium dinitrate tetrahydrate, thiophene-2,5-dicarboxylic acid and imidazole (Him) in an aqueous solution.

As illustrated in Fig. 1, the asymmetric unit of (I) consists of one CdII ion, one TDA2− dianion, two imidazole ligands and one coordinated water molecule. Each CdII atom is seven-coordinate and bound by four carboxyl O atoms from two independent TDA2− groups, two N atoms from two different imidazole ligands, and one water molecule. The local coordination sphere of the CdII atom can be described as distorted pentagonal bipyramidal. The equatorial pentagonal plane is defined by atoms O1, O2, O3i, O4i and N1 [symmetry code: (i) x, y − 1, z]. Atom N3 and the water molecule occupy the axial sites. The smallest O—Cd—O angle, 49.1 (3)°, is attributed to the bis-chelate coordination of the TDA2− ligand that forms two four-membered rings. It should be noted that the two C—O bond distances of the carboxyl group (O3/C6/O4) are almost equivalent, and so in agreement with its delocalized state, whereas the O2—C1 distance is longer than the O1—C1 distance, in accordance with the formal double-bond character of the O1—C1 bond. The dihedral angles between the two carboxyl groups and the thiophene ring are 5.3 (4)° (O1/C1/O2) and 6.0 (4)° (O3/C6/O4), respectively, demonstrating that the TDA2− ligand is basically planar.

Each TDA2− group binds in bis-bidentate chelating mode to link neighbouring CdII atoms to form a one-dimensional linear chain structure which is propagated parallel to the b axis (Fig. 2), in which the closest Cd···Cd distance is 10.577 (6) Å. Furthermore, the water and imidazole molecules form extensive intermolecular hydrogen bonds with carboxylate O atoms (Table 2). There are ππ stacking interactions between adjacent thiophene rings, the centroid–centroid separation being 3.694 (6) Å. The polymeric chains align in a manner that facilitates both hydrogen-bonding and ππ stacking interactions, leading to a three-dimensional supramolecular network (Fig. 3).

Experimental top

Cadmium dinitrate tetrahydrate (3.08 g, 10 mmol) was added to an aqueous solution of thiophene-2,5-dicarboxylic acid (1.72 g, 10 mmol). The pH was adjusted to 6 with 0.1 M sodium hydroxide. Imidazole (1.34 g, 20 mmol) was then added. The mixture was stirred for 1 h and then sealed in a 50 ml Teflon-lined stainless steel bomb and held at 383 K for 3 d. The bomb was cooled naturally to room temperature, and colorless prismatic crystals of (I) were obtained. Analysis calculated for C12H12N4O5SCd: C 33.00, H 2.77, N 12.83%; found: C 32.96, H 2.74, N 12.85%.

Refinement top

The H atoms attached to C atoms and imidazole N atoms were placed in calculated positions, with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N), and were refined with the riding-model approximation. Water H atoms were located in a difference Fourier map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.5Ueq(O). The largest residual peak is 1.08 Å from the Cd atom and the deepest is hole is ?? Å from ??.

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) x, y − 1, z].
[Figure 2] Fig. 2. The linear chain structure of the title complex. H atoms attached to C atoms have been omitted.
[Figure 3] Fig. 3. Packing diagram of the title complex along the a axis. The hydrogen bonds are shown as dashed lines. H atoms attached to C atoms have been omitted.
catena-Poly[[aquadiimidazolecadmium(II)]-µ-thiophene-2,5-dicarboxylato] top
Crystal data top
[Cd(C6H2O4S)(C3H4N2)2(H2O)]Z = 2
Mr = 436.72F(000) = 432
Triclinic, P1Dx = 1.838 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7486 (15) ÅCell parameters from 7316 reflections
b = 10.577 (2) Åθ = 3.0–27.5°
c = 10.947 (2) ŵ = 1.55 mm1
α = 103.71 (3)°T = 295 K
β = 101.57 (3)°Prism, colorless
γ = 108.43 (3)°0.36 × 0.24 × 0.18 mm
V = 789.1 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3564 independent reflections
Radiation source: fine-focus sealed tube2125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 910
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.641, Tmax = 0.761l = 1411
7628 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0795P)2]
where P = (Fo2 + 2Fc2)/3
3564 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 1.78 e Å3
3 restraintsΔρmin = 1.65 e Å3
Crystal data top
[Cd(C6H2O4S)(C3H4N2)2(H2O)]γ = 108.43 (3)°
Mr = 436.72V = 789.1 (4) Å3
Triclinic, P1Z = 2
a = 7.7486 (15) ÅMo Kα radiation
b = 10.577 (2) ŵ = 1.55 mm1
c = 10.947 (2) ÅT = 295 K
α = 103.71 (3)°0.36 × 0.24 × 0.18 mm
β = 101.57 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3564 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2125 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.761Rint = 0.086
7628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.78 e Å3
3564 reflectionsΔρmin = 1.65 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.21550 (8)0.13174 (6)0.24203 (6)0.0330 (2)
S10.1860 (3)0.6113 (2)0.2039 (2)0.0362 (5)
O1W0.1113 (9)0.0124 (6)0.1333 (6)0.0416 (14)
O10.2263 (11)0.2568 (7)0.0406 (10)0.083 (3)
O20.1526 (9)0.3269 (7)0.2207 (9)0.060 (2)
O30.2784 (9)0.9456 (6)0.0900 (6)0.0452 (15)
O40.1993 (9)0.9063 (7)0.2621 (7)0.0503 (16)
N10.1869 (10)0.1785 (9)0.4484 (8)0.0499 (19)
N20.0766 (13)0.1798 (8)0.6174 (8)0.051 (2)
N30.5332 (9)0.2600 (8)0.3021 (8)0.0432 (17)
N40.8273 (10)0.3311 (9)0.2983 (9)0.054 (2)
C10.1985 (12)0.3449 (10)0.1212 (14)0.060 (3)
C100.6629 (12)0.2187 (10)0.2620 (10)0.045 (2)
C110.6190 (15)0.4018 (11)0.3577 (11)0.064 (3)
C120.8015 (14)0.4472 (11)0.3620 (11)0.060 (3)
C20.2286 (11)0.4832 (9)0.0998 (9)0.040 (2)
C30.2954 (12)0.5263 (9)0.0019 (9)0.044 (2)
C40.3111 (12)0.6694 (8)0.0178 (8)0.0352 (18)
C50.2550 (10)0.7282 (8)0.1211 (7)0.0293 (16)
C60.2438 (11)0.8691 (8)0.1598 (8)0.0332 (17)
C70.0363 (13)0.1639 (10)0.4944 (10)0.048 (2)
C80.3338 (14)0.2176 (14)0.5630 (10)0.069 (3)
C90.2646 (16)0.2170 (13)0.6624 (10)0.063 (3)
H100.64330.12680.21620.053*
H110.55810.45990.38890.077*
H120.89200.53870.40040.072*
H140.00260.16860.66270.061*
H150.93170.32960.28350.065*
H1W10.142 (14)0.049 (8)0.075 (6)0.062*
H1W20.132 (14)0.073 (3)0.096 (7)0.062*
H30.32550.47140.06390.053*
H40.35550.71790.03740.042*
H70.08540.14410.44190.057*
H80.46180.24060.56830.082*
H90.33440.23890.74950.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0388 (3)0.0268 (3)0.0415 (4)0.0160 (2)0.0178 (2)0.0159 (2)
S10.0380 (11)0.0313 (11)0.0513 (13)0.0172 (9)0.0196 (9)0.0236 (10)
O1W0.047 (3)0.034 (3)0.041 (3)0.014 (3)0.011 (3)0.012 (3)
O10.068 (5)0.021 (4)0.146 (8)0.025 (3)0.014 (5)0.007 (4)
O20.050 (4)0.040 (4)0.116 (6)0.027 (3)0.036 (4)0.050 (4)
O30.059 (4)0.028 (3)0.058 (4)0.021 (3)0.018 (3)0.023 (3)
O40.066 (4)0.042 (4)0.061 (4)0.028 (3)0.035 (3)0.023 (3)
N10.043 (4)0.061 (5)0.046 (4)0.012 (4)0.020 (3)0.025 (4)
N20.082 (6)0.042 (5)0.046 (5)0.033 (4)0.041 (4)0.015 (4)
N30.037 (4)0.034 (4)0.062 (5)0.015 (3)0.019 (3)0.017 (4)
N40.032 (4)0.061 (6)0.080 (6)0.021 (4)0.018 (4)0.036 (5)
C10.026 (4)0.026 (5)0.122 (10)0.013 (4)0.000 (5)0.027 (6)
C20.026 (4)0.033 (5)0.056 (6)0.009 (3)0.004 (4)0.015 (4)
C30.050 (5)0.036 (5)0.041 (5)0.019 (4)0.011 (4)0.000 (4)
C40.053 (5)0.025 (4)0.034 (4)0.024 (4)0.016 (4)0.006 (3)
C50.031 (4)0.023 (4)0.032 (4)0.010 (3)0.006 (3)0.010 (3)
C60.032 (4)0.026 (4)0.037 (4)0.009 (3)0.006 (3)0.009 (4)
C70.049 (5)0.036 (5)0.067 (7)0.023 (4)0.020 (5)0.021 (5)
C80.040 (5)0.094 (9)0.039 (6)0.002 (5)0.004 (4)0.008 (6)
C90.074 (7)0.067 (8)0.032 (5)0.020 (6)0.017 (5)0.004 (5)
C100.042 (5)0.040 (5)0.064 (6)0.025 (4)0.018 (4)0.023 (5)
C110.072 (7)0.043 (6)0.060 (7)0.010 (5)0.035 (5)0.011 (5)
C120.051 (6)0.041 (6)0.072 (7)0.007 (5)0.014 (5)0.007 (5)
Geometric parameters (Å, º) top
Cd1—O1W2.341 (6)N2—H140.8600
Cd1—O12.829 (6)N3—C101.326 (11)
Cd1—O22.318 (6)N3—C111.355 (12)
Cd1—O3i2.503 (6)N4—C101.346 (12)
Cd1—O4i2.413 (6)N4—C121.356 (13)
Cd1—N12.267 (8)N4—H150.8600
Cd1—N32.269 (7)C1—C21.489 (12)
O1—C11.227 (14)C2—C31.390 (13)
O2—C11.249 (14)C3—C41.444 (12)
O3—C61.244 (9)C3—H30.9300
O4—C61.248 (10)C4—C51.374 (11)
S1—C21.716 (10)C4—H40.9300
S1—C51.716 (7)C5—C61.485 (11)
O1W—H1W10.85 (7)C7—H70.9300
O1W—H1W20.85 (6)C8—C91.306 (14)
O3—Cd1ii2.503 (6)C8—H80.9300
O4—Cd1ii2.413 (6)C9—H90.9300
N1—C71.340 (11)C10—H100.9300
N1—C81.387 (12)C11—C121.329 (14)
N2—C71.277 (12)C11—H110.9300
N2—C91.333 (13)C12—H120.9300
N3—Cd1—O180.4 (3)N4—C12—H12127.5
O1W—Cd1—O186.1 (3)C1—C2—S1120.7 (8)
O2—Cd1—O149.1 (3)C1—O2—Cd1104.5 (6)
O1—Cd1—O3i84.4 (3)C2—C3—C4109.7 (8)
O1—Cd1—O4i136.0 (2)C2—C3—H3125.2
O1—CD1—N1139.2 (2)C2—S1—C592.8 (4)
N1—Cd1—N396.3 (3)C3—C2—C1126.7 (9)
N1—Cd1—O290.5 (3)C3—C2—S1112.6 (6)
N3—Cd1—O290.2 (2)C3—C4—H4122.7
N1—Cd1—O1W95.8 (2)C4—C3—H3125.2
N3—Cd1—O1W166.2 (2)C4—C5—C6128.1 (7)
O2—Cd1—O1W83.2 (2)C4—C5—S1110.4 (6)
N1—Cd1—O4i84.6 (3)C5—C4—C3114.6 (8)
N3—Cd1—O4i103.5 (2)C5—C4—H4122.7
O2—Cd1—O4i165.8 (2)C6—C5—S1121.4 (6)
O1W—Cd1—O4i84.1 (2)C6—O3—Cd1ii90.4 (5)
N1—Cd1—O3i136.3 (2)C6—O4—Cd1ii94.5 (5)
N3—Cd1—O3i86.4 (2)C7—N1—C8101.7 (8)
O2—Cd1—O3i133.2 (2)C7—N1—Cd1132.8 (7)
O1W—Cd1—O3i89.3 (2)C7—N2—C9107.0 (8)
O4i—Cd1—O3i52.7 (2)C7—N2—H14126.5
Cd1—O1W—H1W1108 (7)C8—C9—H9125.9
Cd1—O1W—H1W2108 (7)C8—C9—N2108.2 (9)
O1—C1—C2117.1 (12)C8—N1—Cd1125.1 (7)
O1—C1—O2124.2 (9)C9—C8—H8125.2
O2—C1—C2118.7 (10)C9—C8—N1109.5 (9)
O3—C6—C5119.4 (8)C9—N2—H14126.5
O3—C6—O4122.4 (8)C10—N3—C11105.6 (8)
O4—C6—C5118.3 (7)C10—N3—Cd1126.6 (7)
N1—C7—H7123.3C10—N4—C12108.8 (8)
N1—C8—H8125.2C10—N4—H15125.6
N2—C7—H7123.3C11—C12—H12127.5
N2—C7—N1113.4 (9)C11—C12—N4105.1 (9)
N2—C9—H9125.9C11—N3—Cd1125.9 (6)
N3—C10—H10125.5C12—C11—H11124.4
N3—C10—N4109.0 (9)C12—C11—N3111.2 (9)
N3—C11—H11124.4C12—N4—H15125.6
N4—C10—H10125.5H1W1—O1W—H1W2109 (7)
C1—C2—C3—C4177.8 (7)N1—Cd1—O2—C1166.5 (6)
C10—N3—C11—C124.8 (13)N3—C11—C12—N44.4 (14)
C10—N4—C12—C112.3 (12)N3—Cd1—N1—C7164.2 (9)
C11—N3—C10—N43.2 (11)N3—Cd1—N1—C823.8 (9)
C12—N4—C10—N30.6 (11)N3—Cd1—O2—C170.2 (6)
C2—C3—C4—C51.1 (10)O1—C1—C2—C33.9 (13)
C2—S1—C5—C40.8 (6)O1—C1—C2—S1177.9 (7)
C2—S1—C5—C6177.1 (6)O1W—Cd1—N1—C79.2 (9)
C3—C4—C5—C6176.5 (7)O1W—Cd1—N1—C8162.7 (9)
C3—C4—C5—S11.2 (9)O1W—Cd1—N3—C1076.2 (13)
C4—C5—C6—O34.1 (12)O1W—Cd1—N3—C1186.0 (14)
C4—C5—C6—O4176.0 (8)O1W—Cd1—O2—C197.7 (6)
C5—S1—C2—C1178.6 (6)O2—C1—C2—C3174.1 (8)
C5—S1—C2—C30.1 (6)O2—C1—C2—S14.2 (11)
C7—N1—C8—C92.9 (13)O2—Cd1—N1—C774.0 (9)
C7—N2—C9—C82.4 (13)O2—Cd1—N1—C8114.1 (9)
C8—N1—C7—N24.6 (12)O2—Cd1—N3—C10137.3 (8)
C9—N2—C7—N14.6 (11)O2—Cd1—N3—C1124.9 (9)
Cd1—N1—C7—N2168.7 (7)O3i—Cd1—N1—C7104.3 (9)
Cd1—N1—C8—C9171.1 (8)O3i—Cd1—N1—C867.6 (10)
Cd1—N3—C10—N4168.3 (6)O3i—Cd1—N3—C104.0 (8)
Cd1—N3—C11—C12170.1 (8)O3i—Cd1—N3—C11158.2 (9)
Cd1—O2—C1—C2163.0 (6)O3i—Cd1—O2—C115.1 (7)
Cd1—O2—C1—O114.8 (11)O4i—Cd1—N1—C792.7 (9)
Cd1ii—O3—C6—C5179.6 (6)O4i—Cd1—N1—C879.2 (9)
Cd1ii—O3—C6—O40.3 (8)O4i—Cd1—N3—C1046.2 (8)
Cd1ii—O4—C6—C5179.6 (6)O4i—Cd1—N3—C11151.6 (8)
Cd1ii—O4—C6—O30.3 (8)O4i—Cd1—O2—C1123.9 (10)
N1—C8—C9—N20.4 (14)S1—C2—C3—C40.5 (9)
N1—Cd1—N3—C10132.2 (8)S1—C5—C6—O3173.4 (6)
N1—Cd1—N3—C1165.6 (9)S1—C5—C6—O46.5 (10)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3iii0.85 (7)1.93 (4)2.732 (8)157 (8)
O1W—H1W2···O1iv0.85 (6)1.96 (3)2.770 (10)160 (7)
N2—H14···O4v0.861.922.758 (10)165
N4—H15···O2vi0.861.972.826 (10)171
Symmetry codes: (iii) x, y+1, z; (iv) x, y, z; (v) x, y+1, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C6H2O4S)(C3H4N2)2(H2O)]
Mr436.72
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.7486 (15), 10.577 (2), 10.947 (2)
α, β, γ (°)103.71 (3), 101.57 (3), 108.43 (3)
V3)789.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.36 × 0.24 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.641, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
7628, 3564, 2125
Rint0.086
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.168, 1.06
No. of reflections3564
No. of parameters214
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.78, 1.65

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Cd1—O1W2.341 (6)Cd1—N32.269 (7)
Cd1—O12.829 (6)O1—C11.227 (14)
Cd1—O22.318 (6)O2—C11.249 (14)
Cd1—O3i2.503 (6)O3—C61.244 (9)
Cd1—O4i2.413 (6)O4—C61.248 (10)
Cd1—N12.267 (8)
N3—Cd1—O180.4 (3)O2—Cd1—O1W83.2 (2)
O1W—Cd1—O186.1 (3)N1—Cd1—O4i84.6 (3)
O2—Cd1—O149.1 (3)N3—Cd1—O4i103.5 (2)
O1—Cd1—O3i84.4 (3)O2—Cd1—O4i165.8 (2)
O1—Cd1—O4i136.0 (2)O1W—Cd1—O4i84.1 (2)
O1—CD1—N1139.2 (2)N1—Cd1—O3i136.3 (2)
N1—Cd1—N396.3 (3)N3—Cd1—O3i86.4 (2)
N1—Cd1—O290.5 (3)O2—Cd1—O3i133.2 (2)
N3—Cd1—O290.2 (2)O1W—Cd1—O3i89.3 (2)
N1—Cd1—O1W95.8 (2)O4i—Cd1—O3i52.7 (2)
N3—Cd1—O1W166.2 (2)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3ii0.85 (7)1.93 (4)2.732 (8)157 (8)
O1W—H1W2···O1iii0.85 (6)1.96 (3)2.770 (10)160 (7)
N2—H14···O4iv0.861.922.758 (10)165
N4—H15···O2v0.861.972.826 (10)171
Symmetry codes: (ii) x, y+1, z; (iii) x, y, z; (iv) x, y+1, z+1; (v) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds