Download citation
Download citation
link to html
In the centrosymmetric title compound, [Mn(C6H4N2O4F)2(H2O)4], each MnII ion is coordinated by two 5-fluoro­uracil-1-acetate anions via the carboxyl­ate O atoms and four water mol­ecules, forming a six-coordinate octa­hedral environment. N—H...O and O—H...O hydrogen-bonding inter­actions link adjacent mol­ecules into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039620/rn6071sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039620/rn6071Isup2.hkl
Contains datablock I

CCDC reference: 296631

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C)= 0.003 Å
  • R factor = 0.039
  • wR factor = 0.093
  • Data-to-parameter ratio = 11.0

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

5-Fluorouracil (5-FU) is an antimetabolite with good antimicrobial and antitumor activity, but its administration is accompanied by significant toxic side effects and delivery problems (Ouchi et al., 1997; Nichifor & Schacht, 1994; Nichifor et al., 1997; Hulme et al., 2005). In order to improve the topical delivery of 5-FU and reduce the side effects, many derivatives of 5-FU have been synthesized, some of which have better biological activity. 5-Fluorouracil-1-acetic acid (5-FUAA) is a member of this family (Sloan et al., 1993; Li et al., 2000; Beall & Sloan, 2001; Beall & Sloan, 2002). As increasing attention has been paid to the anticancer activity of 5-FU and its derivatives (Akgerman & Guney, 2000), several transition metal complexes have been reported (Wang et al., 1993; Huang et al., 2000; Hu et al., 2005). The manganese derivative adduct, Mn(C6H4N2O4F)2(H2O)4, (I), is reported here to build on these studies.

Mononuclear (I) consists of an Mn atom, four coordinated water molecules and two 5-fluorouracil-1-acetate anions, which bind through their carboxylate O atoms. The Mn atom lies on an inversion center and the geometry around the Mn ion is octahedral (Fig.1 and Table 1). A square plane is formed by atoms O5, O5i, O6 and O6i [symmetry code: (i) −x, −y, −z + 1], which is crystallographically imposed to be flat. The N—H···O and O—H···O hydrogen bonds link the mononuclear units to form a three-dimensional network (Fig. 2 and Table 2).

Experimental top

5-Fluorouracil-1-acetic acid (2 mmol, 0.75 g) and 1,3-di(4-pyridyl)propane (2 mmol, 0.40 g) were dissovled in a mixture of water (2 ml) and ethanol (8 ml). The solution was then added dropwise to a stirred aqueous solution (10 ml) of MnCl2·2H2O (1 mmol, 0.16 g). The resulting solution was filtered and allowed to evaporate slowly at room temperature. After four weeks, prismatic pink crystals of (I) appeared.

Refinement top

Water H atoms were located in difference density maps and refined with O—H and H···H distances restrained to 0.82 (2) Å and 1.39 (1) Å, respectively, with Uiso(H) = 1.2Ueq(parent atom). The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of Csp2—H = 0.93 Å with Uiso(H) = 1.2Ueq(C), Csp3—H = 0.97 Å with Uiso(H) = 1.5Ueq(C), and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The coordination environment of the manganese(II) ion in (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x, −y, −z + 1.]
[Figure 2] Fig. 2. The three-dimensional network formed by hydrogen-bonding interactions, which are shown as dashed lines.
Tetraaquabis(5-fluorouracil-1-acetato)manganese(II) top
Crystal data top
[Mn(C6H4N2O4F)2(H2O)4]F(000) = 510
Mr = 501.23Dx = 1.763 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 2209 reflections
a = 13.1820 (13) Åθ = 2.9–25.2°
b = 5.1106 (5) ŵ = 0.79 mm1
c = 14.2202 (14) ÅT = 298 K
β = 99.809 (2)°Prism, pink
V = 943.98 (16) Å30.32 × 0.16 × 0.13 mm
Z = 2
Data collection top
Bruker APEX area-detector
diffractometer
1687 independent reflections
Radiation source: fine-focus sealed tube1619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1515
Tmin = 0.786, Tmax = 0.904k = 65
4685 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.5989P]
where P = (Fo2 + 2Fc2)/3
1687 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.19 e Å3
6 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Mn(C6H4N2O4F)2(H2O)4]V = 943.98 (16) Å3
Mr = 501.23Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.1820 (13) ŵ = 0.79 mm1
b = 5.1106 (5) ÅT = 298 K
c = 14.2202 (14) Å0.32 × 0.16 × 0.13 mm
β = 99.809 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
1687 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1619 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.904Rint = 0.019
4685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.19 e Å3
1687 reflectionsΔρmin = 0.26 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.50000.02985 (18)
F10.53352 (12)0.6796 (4)0.83103 (14)0.0620 (5)
O10.07545 (12)0.2476 (3)0.61413 (12)0.0371 (4)
O20.22799 (13)0.0597 (4)0.66409 (13)0.0411 (5)
O30.22356 (13)0.0596 (4)0.88419 (13)0.0380 (4)
O40.56390 (12)0.2580 (4)0.95277 (13)0.0408 (5)
O50.02257 (13)0.2963 (3)0.60239 (14)0.0373 (4)
O60.15636 (14)0.1442 (4)0.50959 (14)0.0459 (5)
N10.28011 (14)0.4091 (4)0.80833 (13)0.0273 (4)
N20.39240 (14)0.1666 (4)0.91748 (13)0.0296 (5)
H20.40170.03840.95720.036*
C10.16163 (17)0.2270 (4)0.66883 (17)0.0286 (5)
C20.18008 (17)0.4377 (5)0.74602 (17)0.0297 (5)
H2A0.17650.60850.71590.036*
H2B0.12600.42850.78440.036*
C30.29390 (17)0.2043 (4)0.87080 (16)0.0272 (5)
C40.47840 (18)0.3104 (5)0.90815 (16)0.0295 (5)
C50.45491 (19)0.5243 (5)0.84221 (18)0.0331 (6)
C60.36076 (18)0.5661 (5)0.79462 (16)0.0297 (5)
H60.34920.70380.75140.036*
H6A0.1832 (18)0.262 (4)0.5366 (15)0.036*
H6B0.1888 (19)0.097 (5)0.4588 (13)0.036*
H5A0.0123 (15)0.434 (4)0.6055 (19)0.036*
H5B0.0839 (12)0.323 (5)0.6023 (19)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0271 (3)0.0249 (3)0.0344 (3)0.0020 (2)0.0039 (2)0.0040 (2)
F10.0373 (9)0.0633 (12)0.0805 (13)0.0184 (8)0.0036 (8)0.0368 (10)
O10.0327 (9)0.0298 (10)0.0424 (10)0.0060 (7)0.0123 (8)0.0071 (8)
O20.0354 (10)0.0390 (10)0.0444 (11)0.0107 (8)0.0062 (8)0.0089 (8)
O30.0274 (9)0.0352 (10)0.0494 (11)0.0040 (8)0.0011 (8)0.0122 (8)
O40.0261 (9)0.0418 (11)0.0500 (11)0.0015 (8)0.0061 (8)0.0138 (9)
O50.0290 (9)0.0309 (9)0.0511 (11)0.0061 (8)0.0042 (8)0.0037 (8)
O60.0359 (10)0.0487 (12)0.0490 (12)0.0123 (9)0.0048 (8)0.0215 (10)
N10.0278 (10)0.0245 (10)0.0265 (10)0.0004 (8)0.0042 (8)0.0004 (8)
N20.0282 (10)0.0266 (11)0.0314 (11)0.0020 (8)0.0023 (8)0.0092 (8)
C10.0290 (12)0.0241 (12)0.0309 (12)0.0005 (10)0.0004 (10)0.0034 (9)
C20.0268 (12)0.0267 (12)0.0320 (13)0.0034 (9)0.0048 (10)0.0005 (10)
C30.0291 (12)0.0245 (12)0.0260 (12)0.0017 (10)0.0007 (9)0.0014 (9)
C40.0302 (12)0.0287 (13)0.0276 (12)0.0020 (10)0.0005 (10)0.0002 (10)
C50.0316 (13)0.0312 (13)0.0357 (13)0.0070 (10)0.0033 (10)0.0067 (10)
C60.0362 (13)0.0241 (12)0.0266 (12)0.0012 (10)0.0008 (10)0.0033 (9)
Geometric parameters (Å, º) top
Mn1—O52.1563 (18)O6—H6B0.810 (15)
Mn1—O5i2.1563 (18)N1—C31.365 (3)
Mn1—O1i2.1620 (16)N1—C61.372 (3)
Mn1—O12.1620 (16)N1—C21.465 (3)
Mn1—O62.2148 (18)N2—C31.368 (3)
Mn1—O6i2.2148 (18)N2—C41.376 (3)
F1—C51.336 (3)N2—H20.8600
O1—C11.267 (3)C1—C21.527 (3)
O2—C11.233 (3)C2—H2A0.9700
O3—C31.226 (3)C2—H2B0.9700
O4—C41.225 (3)C4—C51.439 (3)
O5—H5A0.836 (16)C5—C61.326 (3)
O5—H5B0.820 (15)C6—H60.9300
O6—H6A0.826 (15)
O5—Mn1—O5i180.0C3—N2—C4127.4 (2)
O5—Mn1—O1i89.83 (7)C3—N2—H2116.3
O5i—Mn1—O1i90.17 (7)C4—N2—H2116.3
O5—Mn1—O190.17 (7)O2—C1—O1126.4 (2)
O5i—Mn1—O189.83 (7)O2—C1—C2120.0 (2)
O1i—Mn1—O1180.0O1—C1—C2113.5 (2)
O5—Mn1—O687.43 (7)N1—C2—C1112.40 (19)
O5i—Mn1—O692.57 (7)N1—C2—H2A109.1
O1i—Mn1—O685.81 (7)C1—C2—H2A109.1
O1—Mn1—O694.19 (7)N1—C2—H2B109.1
O5—Mn1—O6i92.57 (7)C1—C2—H2B109.1
O5i—Mn1—O6i87.43 (7)H2A—C2—H2B107.9
O1i—Mn1—O6i94.19 (7)O3—C3—N1122.9 (2)
O1—Mn1—O6i85.81 (7)O3—C3—N2121.3 (2)
O6—Mn1—O6i180.00 (10)N1—C3—N2115.7 (2)
C1—O1—Mn1131.45 (15)O4—C4—N2122.3 (2)
Mn1—O5—H5A119.2 (18)O4—C4—C5125.5 (2)
Mn1—O5—H5B111.3 (18)N2—C4—C5112.3 (2)
H5A—O5—H5B113 (2)C6—C5—F1121.4 (2)
Mn1—O6—H6A138.4 (17)C6—C5—C4122.3 (2)
Mn1—O6—H6B101.6 (17)F1—C5—C4116.3 (2)
H6A—O6—H6B115 (2)C5—C6—N1120.9 (2)
C3—N1—C6121.36 (19)C5—C6—H6119.5
C3—N1—C2118.45 (19)N1—C6—H6119.5
C6—N1—C2119.67 (19)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4ii0.861.992.843 (3)175
O6—H6A···O3iii0.83 (2)2.02 (2)2.834 (3)170 (2)
O6—H6B···O2i0.81 (2)1.91 (2)2.699 (3)163 (2)
O5—H5A···O1iv0.84 (2)1.82 (2)2.656 (2)174 (2)
O5—H5B···O3v0.82 (2)1.98 (2)2.788 (2)170 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+2; (iii) x, y+1/2, z+3/2; (iv) x, y1, z; (v) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn(C6H4N2O4F)2(H2O)4]
Mr501.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.1820 (13), 5.1106 (5), 14.2202 (14)
β (°) 99.809 (2)
V3)943.98 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.32 × 0.16 × 0.13
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.786, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
4685, 1687, 1619
Rint0.019
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.16
No. of reflections1687
No. of parameters154
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002), SHELXL97.

Selected geometric parameters (Å, º) top
Mn1—O52.1563 (18)Mn1—O62.2148 (18)
Mn1—O12.1620 (16)
O5—Mn1—O5i180.0O5i—Mn1—O692.57 (7)
O5—Mn1—O1i89.83 (7)O1i—Mn1—O685.81 (7)
O5—Mn1—O190.17 (7)O1—Mn1—O694.19 (7)
O5—Mn1—O687.43 (7)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4ii0.861.992.843 (3)174.9
O6—H6A···O3iii0.826 (15)2.017 (15)2.834 (3)170 (2)
O6—H6B···O2i0.810 (15)1.912 (15)2.699 (3)163 (2)
O5—H5A···O1iv0.836 (16)1.824 (17)2.656 (2)174 (2)
O5—H5B···O3v0.820 (15)1.977 (17)2.788 (2)170 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+2; (iii) x, y+1/2, z+3/2; (iv) x, y1, z; (v) x, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds