Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, [Cd(C12H8N2)2(H2O)2][NbOF5], consists of CdII complex cations and NbV complex anions. The CdII and NbV atoms both have a distorted octa­hedral geometry. The Nb—F bond trans to the Nb=O bond is significantly longer than the other four Nb—F bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030394/rn6066sup1.cif
Contains datablocks 050701b, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030394/rn6066Isup2.hkl
Contains datablock I

CCDC reference: 287695

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.034
  • wR factor = 0.092
  • Data-to-parameter ratio = 12.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Nb1 PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 9 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.847(19) ...... 2.11 su-Rat O1 -H25 1.555 1.555
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Out-of-center `primary' electronic distortions are inherent to oxide fluoride anions of the early d0 transition metals. In the [NbOF5]2− anion, the NbV atom deviates from the center of the octahedron toward the oxygen ligand, forming a short NbO bond and long trans Nb—F bond. The trans-directing property of the [NbOF5]2− anion can be exploited when designing new materials that exhibit important structure-dependent properties such as piezoelectricity, second-order non-linear optical activity and ferroelectricity (Heier et al., 1998; Welk et al., 2002). Here the synthesis, crystal structure and characterization of a mixed-metal complex [Cd(C12H8N2)2(H2O)2]2+·[NbOF5]2− (I), which incorporates the [NbOF5]2− anion, is reported.

The molecular structure of (I) is shown in Fig. 1. The crystal structure of (I) is built up of CdII complex cations and NbV complex anions. The CdII atom has an octahedral coordination geometry with two 1,10-phenanthroline (phen) and two water molecules. The NbV atom assumes a distorted octahedral coordination with five F atoms and one O atom. The Nb—F bond trans to the NbO bond is significantly longer than the other four Nb—F bonds in the same anion (Table 1). This feature was also observed in previously reported structures (Halasyamani et al., 1996; Norquist et al., 1999; Izumi et al., 2005). The coordinated water molecules of the CdII complex cation form hydrogen bonds with the [NbOF5]2− anion. Some phen H atoms also interact with the [NbOF5]2− anion by C—H···F hydrogen bonds (Table 2).

Experimental top

All reagents were of analytical grade from commercial sources and used without further purification. Nb2O5 (0.133 g, 0.5 mmol) was first dissolved in HF solution (1 ml, 42 wt% in H2O) at 383 K for 2 h in a Teflon-lined stainless steel vessel. After being cooled to room temperature, 3 CdSO4·8H2O (0.257 g, 0.33 mmol), phen (0.496 g, 2.5 mmol) and H2O (15 ml) were added to the above solution. The pH of the mixture was adjusted to about 6 usingy KOH solution. The mixture was then heated under autogenous hydrothermal conditions at 413 K for 3 d. The mixture was filtered, then the solution was allowed to evaporate slowly. After five d, colorless single crystals suitable for X-ray diffraction were obtained. The crystals were dried in air. Elemental analysis: found: C, 40.31%; H, 2.78%; N, 7.87%; calc. for C24H20CdF5N4NbO3: C, 40.34%;H, 2.82%;N, 7.85%.

Refinement top

The water H atoms were located in a different Fourier map and refined with the O—H bond length restrained to 0.85 (2) Å, and assigned fixed isotropic displacement parameters of 0.080 Å2. Other H atoms were placed at calculated positions and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXTL (Siemens, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted.
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the a axis. For clarity, all H atoms have been omitted. Dashed lines indicate O—H···F hydrogen-bonding interactions.
Diaquabis(1,10-phenanthroline-κ2N,N')cadmium(II) pentafluoride-oxide niobate top
Crystal data top
[Cd(C12H8N2)2(H2O)2]2+·[NbOF5]2Z = 2
Mr = 712.75F(000) = 700
Triclinic, P1Dx = 1.850 Mg m3
a = 9.487 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.537 (5) ÅCell parameters from 2883 reflections
c = 13.007 (5) Åθ = 2.2–27.2°
α = 99.162 (6)°µ = 1.35 mm1
β = 109.646 (6)°T = 298 K
γ = 100.661 (5)°Block, colorless
V = 1279.3 (9) Å30.35 × 0.33 × 0.29 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4464 independent reflections
Radiation source: fine-focus sealed tube3413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and w scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1111
Tmin = 0.650, Tmax = 0.696k = 1313
6750 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0456P)2 + 1.0033P]
where P = (Fo2 + 2Fc2)/3
4464 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.50 e Å3
6 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Cd(C12H8N2)2(H2O)2]2+·[NbOF5]2γ = 100.661 (5)°
Mr = 712.75V = 1279.3 (9) Å3
Triclinic, P1Z = 2
a = 9.487 (4) ÅMo Kα radiation
b = 11.537 (5) ŵ = 1.35 mm1
c = 13.007 (5) ÅT = 298 K
α = 99.162 (6)°0.35 × 0.33 × 0.29 mm
β = 109.646 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4464 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3413 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.696Rint = 0.016
6750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.50 e Å3
4464 reflectionsΔρmin = 0.79 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb10.56044 (5)0.26190 (4)0.68194 (4)0.04562 (14)
Cd10.48108 (4)0.22250 (3)0.26707 (3)0.04084 (12)
F10.3689 (3)0.1749 (3)0.5529 (3)0.0645 (8)
F20.6539 (4)0.2892 (3)0.5737 (3)0.0877 (11)
F30.7403 (4)0.3686 (3)0.7989 (3)0.0948 (13)
F40.4467 (5)0.2584 (4)0.7758 (3)0.0957 (13)
F50.4931 (4)0.4141 (3)0.6460 (3)0.0840 (11)
N10.7174 (4)0.1902 (3)0.3678 (3)0.0432 (9)
N20.6781 (4)0.3698 (3)0.2523 (3)0.0459 (9)
N30.2769 (4)0.2571 (3)0.1263 (3)0.0480 (10)
N40.3873 (5)0.0544 (3)0.1105 (3)0.0444 (9)
O10.3448 (4)0.0971 (3)0.3408 (3)0.0493 (8)
O20.4641 (5)0.3733 (3)0.3952 (3)0.0556 (9)
O30.6210 (4)0.1283 (3)0.7002 (3)0.0592 (9)
C10.7350 (6)0.1069 (4)0.4266 (5)0.0564 (14)
H10.64800.04820.41880.068*
C20.8802 (6)0.1041 (5)0.5003 (5)0.0639 (15)
H20.88870.04560.54200.077*
C31.0069 (6)0.1863 (5)0.5104 (5)0.0648 (15)
H31.10380.18380.55830.078*
C40.9938 (5)0.2763 (5)0.4488 (5)0.0531 (13)
C50.8436 (5)0.2750 (4)0.3782 (4)0.0397 (10)
C60.8245 (5)0.3694 (4)0.3180 (4)0.0420 (11)
C70.9554 (6)0.4562 (5)0.3268 (5)0.0560 (13)
C80.9319 (8)0.5483 (6)0.2685 (6)0.0763 (18)
H81.01550.60830.27300.092*
C90.7860 (8)0.5479 (6)0.2063 (6)0.082 (2)
H90.76890.60860.16780.099*
C100.6600 (7)0.4574 (5)0.1987 (5)0.0632 (15)
H100.56060.45900.15460.076*
C111.1230 (6)0.3651 (5)0.4559 (5)0.0683 (16)
H111.22200.36410.50130.082*
C121.1044 (6)0.4513 (5)0.3974 (5)0.0700 (16)
H121.19120.50900.40330.084*
C130.2209 (6)0.3548 (5)0.1342 (5)0.0646 (15)
H130.27150.41780.19840.078*
C140.0918 (7)0.3664 (6)0.0519 (5)0.0732 (17)
H140.05590.43560.06110.088*
C150.0179 (6)0.2771 (7)0.0421 (5)0.0744 (19)
H150.06920.28470.09810.089*
C160.0711 (6)0.1723 (6)0.0564 (4)0.0584 (14)
C170.2041 (5)0.1665 (4)0.0323 (4)0.0450 (11)
C180.2603 (5)0.0591 (4)0.0244 (4)0.0455 (11)
C190.1809 (7)0.0387 (5)0.0701 (4)0.0601 (15)
C200.2364 (9)0.1435 (6)0.0713 (6)0.0789 (19)
H200.18650.21080.13180.095*
C210.3626 (9)0.1461 (5)0.0158 (6)0.0759 (19)
H210.39930.21540.01540.091*
C220.4373 (7)0.0456 (4)0.1054 (5)0.0570 (14)
H220.52520.04820.16390.068*
C230.0032 (7)0.0732 (7)0.1502 (5)0.080 (2)
H230.08980.07770.20870.096*
C240.0478 (8)0.0280 (7)0.1578 (5)0.082 (2)
H240.00440.09200.22100.098*
H250.359 (7)0.026 (3)0.330 (4)0.080*
H260.360 (7)0.120 (4)0.409 (2)0.080*
H270.484 (6)0.446 (2)0.389 (4)0.080*
H280.511 (6)0.374 (5)0.462 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0455 (3)0.0366 (2)0.0480 (3)0.00582 (19)0.0094 (2)0.0156 (2)
Cd10.03382 (19)0.03347 (19)0.0463 (2)0.00719 (14)0.00468 (15)0.00974 (15)
F10.0536 (18)0.0518 (18)0.066 (2)0.0006 (14)0.0051 (15)0.0070 (15)
F20.087 (3)0.093 (3)0.101 (3)0.014 (2)0.054 (2)0.045 (2)
F30.081 (2)0.053 (2)0.093 (3)0.0164 (18)0.030 (2)0.0021 (18)
F40.119 (3)0.133 (3)0.088 (3)0.081 (3)0.067 (2)0.055 (2)
F50.078 (2)0.0386 (17)0.107 (3)0.0187 (16)0.006 (2)0.0261 (17)
N10.033 (2)0.033 (2)0.056 (2)0.0069 (17)0.0087 (18)0.0082 (18)
N20.046 (2)0.042 (2)0.053 (2)0.0124 (18)0.021 (2)0.0149 (19)
N30.044 (2)0.036 (2)0.049 (2)0.0095 (18)0.0006 (19)0.0126 (19)
N40.050 (2)0.039 (2)0.045 (2)0.0098 (18)0.019 (2)0.0148 (18)
O10.055 (2)0.0308 (17)0.053 (2)0.0039 (16)0.0131 (18)0.0085 (15)
O20.079 (3)0.0335 (18)0.052 (2)0.0184 (18)0.021 (2)0.0115 (16)
O30.063 (2)0.0427 (19)0.080 (3)0.0250 (17)0.027 (2)0.0249 (18)
C10.039 (3)0.042 (3)0.083 (4)0.012 (2)0.012 (3)0.024 (3)
C20.048 (3)0.060 (3)0.082 (4)0.025 (3)0.010 (3)0.031 (3)
C30.044 (3)0.059 (4)0.082 (4)0.020 (3)0.008 (3)0.017 (3)
C40.032 (3)0.048 (3)0.067 (3)0.006 (2)0.012 (2)0.002 (3)
C50.035 (2)0.034 (2)0.047 (3)0.0071 (19)0.015 (2)0.002 (2)
C60.043 (3)0.037 (2)0.045 (3)0.009 (2)0.021 (2)0.002 (2)
C70.052 (3)0.049 (3)0.071 (4)0.004 (2)0.033 (3)0.012 (3)
C80.069 (4)0.067 (4)0.101 (5)0.006 (3)0.044 (4)0.031 (4)
C90.097 (5)0.071 (4)0.107 (5)0.021 (4)0.058 (5)0.052 (4)
C100.064 (4)0.064 (4)0.074 (4)0.022 (3)0.031 (3)0.031 (3)
C110.033 (3)0.071 (4)0.088 (4)0.005 (3)0.014 (3)0.015 (3)
C120.039 (3)0.067 (4)0.094 (5)0.006 (3)0.027 (3)0.013 (3)
C130.063 (4)0.052 (3)0.066 (4)0.025 (3)0.002 (3)0.017 (3)
C140.058 (4)0.073 (4)0.079 (4)0.025 (3)0.002 (3)0.032 (4)
C150.044 (3)0.106 (5)0.076 (4)0.022 (3)0.009 (3)0.056 (4)
C160.040 (3)0.079 (4)0.046 (3)0.002 (3)0.006 (2)0.023 (3)
C170.039 (3)0.050 (3)0.037 (3)0.001 (2)0.007 (2)0.015 (2)
C180.045 (3)0.048 (3)0.036 (3)0.003 (2)0.015 (2)0.008 (2)
C190.066 (4)0.060 (4)0.041 (3)0.010 (3)0.026 (3)0.007 (3)
C200.108 (6)0.056 (4)0.064 (4)0.005 (4)0.047 (4)0.012 (3)
C210.118 (6)0.049 (3)0.082 (5)0.019 (4)0.068 (5)0.010 (3)
C220.077 (4)0.044 (3)0.063 (3)0.022 (3)0.038 (3)0.018 (3)
C230.048 (4)0.109 (6)0.052 (4)0.008 (4)0.003 (3)0.015 (4)
C240.068 (4)0.092 (5)0.047 (4)0.023 (4)0.009 (3)0.009 (3)
Geometric parameters (Å, º) top
Nb1—O31.764 (3)C5—C61.442 (6)
Nb1—F41.882 (3)C6—C71.402 (6)
Nb1—F31.903 (3)C7—C81.408 (8)
Nb1—F21.935 (3)C7—C121.421 (8)
Nb1—F11.966 (3)C8—C91.347 (9)
Nb1—F52.046 (3)C8—H80.9300
Cd1—O22.279 (3)C9—C101.398 (8)
Cd1—O12.296 (3)C9—H90.9300
Cd1—N12.317 (4)C10—H100.9300
Cd1—N32.324 (4)C11—C121.348 (8)
Cd1—N42.364 (4)C11—H110.9300
Cd1—N22.364 (4)C12—H120.9300
N1—C11.321 (6)C13—C141.375 (7)
N1—C51.351 (5)C13—H130.9300
N2—C101.321 (6)C14—C151.342 (9)
N2—C61.366 (6)C14—H140.9300
N3—C131.336 (6)C15—C161.403 (8)
N3—C171.350 (6)C15—H150.9300
N4—C221.326 (6)C16—C231.404 (9)
N4—C181.358 (6)C16—C171.415 (7)
O1—H250.847 (19)C17—C181.439 (7)
O1—H260.839 (19)C18—C191.404 (7)
O2—H270.848 (19)C19—C201.405 (8)
O2—H280.831 (19)C19—C241.430 (8)
C1—C21.398 (7)C20—C211.353 (9)
C1—H10.9300C20—H200.9300
C2—C31.338 (8)C21—C221.384 (8)
C2—H20.9300C21—H210.9300
C3—C41.408 (8)C22—H220.9300
C3—H30.9300C23—C241.345 (9)
C4—C51.408 (6)C23—H230.9300
C4—C111.410 (7)C24—H240.9300
O3—Nb1—F497.27 (16)N1—C5—C4122.0 (4)
O3—Nb1—F395.20 (16)N1—C5—C6119.4 (4)
F4—Nb1—F392.4 (2)C4—C5—C6118.7 (4)
O3—Nb1—F294.16 (16)N2—C6—C7122.0 (4)
F4—Nb1—F2168.09 (15)N2—C6—C5118.4 (4)
F3—Nb1—F289.83 (18)C7—C6—C5119.6 (4)
O3—Nb1—F193.48 (15)C6—C7—C8117.9 (5)
F4—Nb1—F189.08 (17)C6—C7—C12119.2 (5)
F3—Nb1—F1170.92 (13)C8—C7—C12122.8 (5)
F2—Nb1—F186.89 (16)C9—C8—C7118.8 (6)
O3—Nb1—F5174.37 (16)C9—C8—H8120.6
F4—Nb1—F587.87 (16)C7—C8—H8120.6
F3—Nb1—F586.84 (13)C8—C9—C10120.8 (6)
F2—Nb1—F580.58 (16)C8—C9—H9119.6
F1—Nb1—F584.27 (13)C10—C9—H9119.6
O2—Cd1—O183.87 (13)N2—C10—C9122.0 (6)
O2—Cd1—N1101.00 (13)N2—C10—H10119.0
O1—Cd1—N194.16 (13)C9—C10—H10119.0
O2—Cd1—N390.24 (14)C12—C11—C4120.7 (5)
O1—Cd1—N399.79 (13)C12—C11—H11119.7
N1—Cd1—N3162.96 (14)C4—C11—H11119.7
O2—Cd1—N4156.25 (14)C11—C12—C7121.6 (5)
O1—Cd1—N484.41 (13)C11—C12—H12119.2
N1—Cd1—N4100.39 (13)C7—C12—H12119.2
N3—Cd1—N471.53 (14)N3—C13—C14123.0 (6)
O2—Cd1—N286.50 (13)N3—C13—H13118.5
O1—Cd1—N2161.40 (13)C14—C13—H13118.5
N1—Cd1—N272.10 (13)C15—C14—C13119.4 (6)
N3—Cd1—N296.12 (14)C15—C14—H14120.3
N4—Cd1—N2109.92 (13)C13—C14—H14120.3
C1—N1—C5119.1 (4)C14—C15—C16120.6 (5)
C1—N1—Cd1124.7 (3)C14—C15—H15119.7
C5—N1—Cd1115.5 (3)C16—C15—H15119.7
C10—N2—C6118.5 (4)C15—C16—C23123.8 (6)
C10—N2—Cd1127.1 (4)C15—C16—C17116.8 (5)
C6—N2—Cd1113.9 (3)C23—C16—C17119.4 (6)
C13—N3—C17118.3 (4)N3—C17—C16121.9 (5)
C13—N3—Cd1125.3 (3)N3—C17—C18118.7 (4)
C17—N3—Cd1116.3 (3)C16—C17—C18119.3 (5)
C22—N4—C18119.1 (4)N4—C18—C19121.9 (5)
C22—N4—Cd1125.9 (4)N4—C18—C17118.7 (4)
C18—N4—Cd1114.6 (3)C19—C18—C17119.5 (5)
Cd1—O1—H25111 (4)C18—C19—C20117.2 (6)
Cd1—O1—H26118 (4)C18—C19—C24119.1 (6)
H25—O1—H26107 (3)C20—C19—C24123.7 (6)
Cd1—O2—H27120 (4)C21—C20—C19119.7 (6)
Cd1—O2—H28115 (4)C21—C20—H20120.1
H27—O2—H28107 (3)C19—C20—H20120.1
N1—C1—C2122.1 (5)C20—C21—C22120.1 (6)
N1—C1—H1118.9C20—C21—H21120.0
C2—C1—H1118.9C22—C21—H21120.0
C3—C2—C1119.6 (5)N4—C22—C21122.0 (6)
C3—C2—H2120.2N4—C22—H22119.0
C1—C2—H2120.2C21—C22—H22119.0
C2—C3—C4120.2 (5)C24—C23—C16121.7 (6)
C2—C3—H3119.9C24—C23—H23119.1
C4—C3—H3119.9C16—C23—H23119.1
C3—C4—C5116.9 (5)C23—C24—C19121.1 (6)
C3—C4—C11122.8 (5)C23—C24—H24119.5
C5—C4—C11120.3 (5)C19—C24—H24119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H25···O3i0.85 (4)1.83 (4)2.672 (5)177
O1—H26···F10.84 (3)1.84 (3)2.679 (5)172 (6)
O2—H27···F5ii0.85 (3)1.74 (3)2.582 (5)171
O2—H28···F20.83 (3)2.12 (5)2.851 (5)146 (5)
O2—H28···F50.83 (3)2.44 (3)3.130 (5)142 (5)
C11—H11···F5iii0.932.523.427 (7)166
C12—H12···F2iv0.932.433.299 (7)156
C13—H13···F3ii0.932.483.089 (7)123
C15—H15···F3v0.932.333.224 (8)161
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Cd(C12H8N2)2(H2O)2]2+·[NbOF5]2
Mr712.75
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.487 (4), 11.537 (5), 13.007 (5)
α, β, γ (°)99.162 (6), 109.646 (6), 100.661 (5)
V3)1279.3 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.35 × 0.33 × 0.29
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.650, 0.696
No. of measured, independent and
observed [I > 2σ(I)] reflections
6750, 4464, 3413
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.00
No. of reflections4464
No. of parameters355
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.79

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXTL (Siemens, 1995).

Selected bond lengths (Å) top
Nb1—O31.764 (3)Cd1—O22.279 (3)
Nb1—F41.882 (3)Cd1—O12.296 (3)
Nb1—F31.903 (3)Cd1—N12.317 (4)
Nb1—F21.935 (3)Cd1—N32.324 (4)
Nb1—F11.966 (3)Cd1—N42.364 (4)
Nb1—F52.046 (3)Cd1—N22.364 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H25···O3i0.85 (4)1.83 (4)2.672 (5)177
O1—H26···F10.84 (3)1.84 (3)2.679 (5)172 (6)
O2—H27···F5ii0.85 (3)1.74 (3)2.582 (5)171
O2—H28···F20.83 (3)2.12 (5)2.851 (5)146 (5)
O2—H28···F50.83 (3)2.44 (3)3.130 (5)142 (5)
C11—H11···F5iii0.932.523.427 (7)166
C12—H12···F2iv0.932.433.299 (7)156
C13—H13···F3ii0.932.483.089 (7)123
C15—H15···F3v0.932.333.224 (8)161
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x1, y, z1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds