metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bromido(methyl­amine)­bis­­(propane-1,3-di­amine)­cobalt(III) dibromide

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 13 April 2013; accepted 1 June 2013; online 12 June 2013)

In the title compound, [CoBr(CH5N)(C3H10N2)2]Br2, the cobaltIII ion has a distorted octa­hedral coordination environment and is surrounded by four N atoms in the equatorial plane, with an additional N atom and the Br atom occupying the axial positions. In the crystal, the complex cation and the two counter anions are linked via N—H⋯Br and C—H⋯Br hydrogen bonds, forming a three-dimensional network.

Related literature

In the synthesis of cobalt(III) complexes, substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron-transfer rates, see: Anbalagan (2011[Anbalagan, K. (2011). J. Phys. Chem. C, 115, 3821-3832.]); Anbalagan et al. (2011[Anbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45-52.]). For the biological activity and potential applications of mixed-ligand cobalt(III) complexes, see: Arslan et al. (2009[Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519-527.]); Delehanty et al. (2008[Delehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickeya, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830-837.]); Sayed et al. (1992[Sayed, G. H., Radwan, A., Mohamed, S. M., Shiba, S. A. & Kalil, M. (1992). Chin. J. Chem. 10, 475-480.]); Teicher et al. (1990[Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971-6975.]); Chang et al. (2010[Chang, E. L., Simmers, C. & Knight, A. D. (2010). Pharmaceuticals, 3, 1711-1728.]). For related structures, see: Anbalagan et al. (2009[Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836-m837.]); Lee et al. (2007[Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949-m1950.]); Ramesh et al. (2008[Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300-m301.]); Ravichandran et al. (2009[Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174-m1175.]). For Co—N bond lengths, see: Maheshwaran et al. (2013[Maheshwaran, V., Manjunathan, M., Anbalagan, K., Thiruselvam, V. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, m205-m206.]).

[Scheme 1]

Experimental

Crystal data
  • [CoBr(CH5N)(C3H10N2)2]Br2

  • Mr = 477.95

  • Monoclinic, P 21 /c

  • a = 13.4418 (2) Å

  • b = 8.3088 (1) Å

  • c = 15.1538 (2) Å

  • β = 110.61 (2)°

  • V = 1584.16 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.64 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.133, Tmax = 0.194

  • 6000 measured reflections

  • 2784 independent reflections

  • 1701 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.238

  • S = 1.07

  • 2784 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −2.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Br2i 0.90 2.67 3.489 (11) 152
N1—H1D⋯Br2 0.90 2.61 3.504 (10) 174
N2—H2C⋯Br3 0.90 2.66 3.526 (10) 162
N2—H2D⋯Br3ii 0.90 2.64 3.419 (10) 146
N3—H3C⋯Br3 0.90 2.53 3.406 (12) 164
N3—H3D⋯Br2 0.90 2.59 3.482 (11) 171
N4—H4C⋯Br2iii 0.90 2.62 3.511 (10) 170
N4—H4D⋯Br3ii 0.90 2.49 3.379 (11) 170
N5—H5C⋯Br2iii 0.90 2.77 3.632 (11) 160
N5—H5D⋯Br2i 0.90 2.64 3.532 (12) 170
C6—H6A⋯Br3iii 0.97 2.91 3.773 (16) 148
C7—H7B⋯Br1iv 0.96 2.90 3.766 (13) 150
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Mixed ligand cobalt(III) complexes find potential applications in the fields of antitumor, antibacterial, antimicrobial, radiosenzitation and cytotoxicity activities (Sayed et al., 1992; Teicher et al., 1990; Arslan et al., 2009; Delehanty et al., 2008). Cobalt is an essential and integral component of vitamin B12, therefore it is physiologically found in most tissues. Complexes of cobalt are useful for nutritional supplementation to provide cobalt in a form which effectively increases the bioavailability, for instance, vitamin B12 by microorganisms present in the gut. In addition, cobalt(III) complexes are known for electron transfer and ligand substitution reactions, which find applications in chemical and biological systems. Against this background and to ascertain the molecular conformation, the structure determination of the title compound has been carried out.

The present research is the design and synthesis of cobalt(III) complexes with an objective to understand the structure-reactivity correlation. Substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron transfer rates (Anbalagan, 2011; Anbalagan et al., 2011).

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths [Co-N] in (Fig. 1) agree with those observed [1.9722 (2) to 1.988 (2)Å] in the literature (Maheshwaran et al. (2013). The whole molecule is not planar as the dihedral angle between the two pyrimidine rings is 84.8 (5)°. The bond lengths [Co-N] are comparable with the values reported[1.9493 (1) to 1.9673 (2)Å]in the literature (Lee et al., 2007; Ramesh et al., 2008; Anbalagan et al., 2009; Ravichandran et al.,2009). One of the six membered rings in the molecule adopts a chair conformation. The crystal packing is stabilized by C–H···Br and N–H···Br interactions along the a axis as shown in Fig.2.

Related literature top

In the synthesis of cobalt(III) complexes, substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron-transfer rates, see: Anbalagan (2011); Anbalagan et al. (2011). For the biological activity and potential applications of mixed-ligand cobalt(III) complexes, see: Arslan et al. (2009); Delehanty et al. (2008); Sayed et al. (1992); Teicher et al. (1990); Chang et al. (2010). For related structures, see: Anbalagan et al. (2009); Lee et al. (2007); Ramesh et al. (2008); Ravichandran et al. (2009). For Co—N bond lengths, see: Maheshwaran et al. (2013).

Experimental top

Crystalline trans-[CoIII(tn)2Br2]Br (2g) was made into a paste using 3-4 drops of water. To the solid mass, about 4 ml of 0.12 M methyl amine (MeNH2) was dropped for 30 min and mixed well. The grinding of a dull green paste was continued to obtain a red mass and the reaction mixture was set aside until no further change was observed. Then the product was allowed to stand overnight and the solid was washed with ethanol. The final product was dissolved in 5-10 ml of water pre-heated to 70°C and allowed to crystallize in hot acidified water(few drops of hot conc. HCl and 2 ml of water and cooled). Finally, microcrystalline pink color crystals were retrieved (yield 0.87 g), filtered, washed with ethanol and dried over vacuum. X-ray quality crystals were obtained by recrystallization from hot acidified distilled water.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Structure description top

Mixed ligand cobalt(III) complexes find potential applications in the fields of antitumor, antibacterial, antimicrobial, radiosenzitation and cytotoxicity activities (Sayed et al., 1992; Teicher et al., 1990; Arslan et al., 2009; Delehanty et al., 2008). Cobalt is an essential and integral component of vitamin B12, therefore it is physiologically found in most tissues. Complexes of cobalt are useful for nutritional supplementation to provide cobalt in a form which effectively increases the bioavailability, for instance, vitamin B12 by microorganisms present in the gut. In addition, cobalt(III) complexes are known for electron transfer and ligand substitution reactions, which find applications in chemical and biological systems. Against this background and to ascertain the molecular conformation, the structure determination of the title compound has been carried out.

The present research is the design and synthesis of cobalt(III) complexes with an objective to understand the structure-reactivity correlation. Substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron transfer rates (Anbalagan, 2011; Anbalagan et al., 2011).

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths [Co-N] in (Fig. 1) agree with those observed [1.9722 (2) to 1.988 (2)Å] in the literature (Maheshwaran et al. (2013). The whole molecule is not planar as the dihedral angle between the two pyrimidine rings is 84.8 (5)°. The bond lengths [Co-N] are comparable with the values reported[1.9493 (1) to 1.9673 (2)Å]in the literature (Lee et al., 2007; Ramesh et al., 2008; Anbalagan et al., 2009; Ravichandran et al.,2009). One of the six membered rings in the molecule adopts a chair conformation. The crystal packing is stabilized by C–H···Br and N–H···Br interactions along the a axis as shown in Fig.2.

In the synthesis of cobalt(III) complexes, substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron-transfer rates, see: Anbalagan (2011); Anbalagan et al. (2011). For the biological activity and potential applications of mixed-ligand cobalt(III) complexes, see: Arslan et al. (2009); Delehanty et al. (2008); Sayed et al. (1992); Teicher et al. (1990); Chang et al. (2010). For related structures, see: Anbalagan et al. (2009); Lee et al. (2007); Ramesh et al. (2008); Ravichandran et al. (2009). For Co—N bond lengths, see: Maheshwaran et al. (2013).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing viewed down the a axis. Dashed lines shows the intermolecular N-H···Br and C-H···Br hydrogen bonds.
cis-Bromido(methylamine)bis(propane-1,3-diamine)cobalt(III) dibromide top
Crystal data top
[CoBr(CH5N)(C3H10N2)2]Br2F(000) = 936
Mr = 477.95Dx = 2.004 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybcCell parameters from 2784 reflections
a = 13.4418 (2) Åθ = 2.8–25.0°
b = 8.3088 (1) ŵ = 8.64 mm1
c = 15.1538 (2) ÅT = 293 K
β = 110.61 (2)°Block, pink
V = 1584.16 (4) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2784 independent reflections
Radiation source: fine-focus sealed tube1701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and φ scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1515
Tmin = 0.133, Tmax = 0.194k = 99
6000 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1435P)2]
where P = (Fo2 + 2Fc2)/3
2784 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 2.69 e Å3
Crystal data top
[CoBr(CH5N)(C3H10N2)2]Br2V = 1584.16 (4) Å3
Mr = 477.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4418 (2) ŵ = 8.64 mm1
b = 8.3088 (1) ÅT = 293 K
c = 15.1538 (2) Å0.25 × 0.22 × 0.19 mm
β = 110.61 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2784 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1701 reflections with I > 2σ(I)
Tmin = 0.133, Tmax = 0.194Rint = 0.042
6000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.238H-atom parameters constrained
S = 1.07Δρmax = 1.50 e Å3
2784 reflectionsΔρmin = 2.69 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7910 (12)0.1257 (17)0.3267 (9)0.045 (4)
H1A0.75590.22500.33250.054*
H1B0.85750.15410.31900.054*
C20.7216 (13)0.038 (2)0.2389 (10)0.056 (4)
H2A0.75660.06200.23340.067*
H2B0.71570.10300.18420.067*
C30.6107 (12)0.0016 (18)0.2366 (10)0.050 (4)
H3A0.56820.04070.17440.060*
H3B0.57740.09530.24880.060*
C40.8425 (12)0.4274 (18)0.4830 (12)0.057 (4)
H4A0.78920.48910.49790.068*
H4B0.88310.50040.45880.068*
C50.9195 (13)0.336 (2)0.5754 (11)0.058 (5)
H5A0.96420.26050.55790.070*
H5B0.96510.41390.61890.070*
C60.8508 (14)0.245 (2)0.6238 (11)0.066 (5)
H6A0.89620.21310.68660.079*
H6B0.79770.31870.63050.079*
C70.6526 (9)0.2195 (12)0.4742 (10)0.032 (3)
H7A0.64970.26280.41460.047*
H7B0.60530.27870.49700.047*
H7C0.72380.22800.51860.047*
N10.6135 (8)0.1214 (12)0.3058 (7)0.030 (2)
H1C0.54730.12640.30740.036*
H1D0.62510.21610.28220.036*
N20.8141 (7)0.0346 (11)0.4126 (7)0.027 (2)
H2C0.87260.02380.41880.033*
H2D0.83320.10670.45990.033*
N30.7916 (8)0.3030 (13)0.4129 (8)0.036 (3)
H3C0.84300.26080.39470.043*
H3D0.74660.35450.36230.043*
N40.7983 (7)0.1060 (13)0.5734 (7)0.032 (3)
H4C0.75640.06790.60370.038*
H4D0.84880.03120.57950.038*
N50.6215 (8)0.0543 (14)0.4628 (8)0.040 (3)
H5C0.60910.02550.51520.047*
H5D0.55840.05030.41510.047*
Co10.71072 (12)0.11628 (19)0.43861 (10)0.0226 (5)
Br10.59629 (16)0.3048 (2)0.47361 (15)0.0770 (7)
Br20.63730 (10)0.49197 (15)0.20461 (9)0.0347 (4)
Br31.01970 (11)0.19252 (18)0.37939 (10)0.0427 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (10)0.044 (9)0.038 (8)0.001 (8)0.033 (8)0.007 (7)
C20.068 (11)0.070 (11)0.026 (8)0.016 (9)0.014 (8)0.020 (8)
C30.047 (9)0.066 (11)0.023 (7)0.011 (8)0.003 (7)0.002 (8)
C40.054 (10)0.040 (9)0.068 (12)0.025 (8)0.012 (9)0.021 (9)
C50.045 (9)0.076 (12)0.035 (9)0.002 (9)0.009 (8)0.009 (9)
C60.076 (12)0.074 (11)0.024 (8)0.019 (10)0.012 (8)0.017 (8)
C70.021 (6)0.008 (6)0.074 (10)0.004 (5)0.028 (7)0.001 (6)
N10.026 (6)0.036 (6)0.025 (6)0.004 (5)0.004 (5)0.012 (5)
N20.027 (6)0.026 (5)0.022 (6)0.008 (5)0.001 (5)0.011 (5)
N30.023 (5)0.043 (6)0.030 (6)0.006 (5)0.006 (5)0.003 (6)
N40.023 (5)0.050 (7)0.020 (5)0.003 (5)0.006 (4)0.004 (5)
N50.025 (6)0.062 (8)0.030 (6)0.009 (6)0.008 (5)0.005 (6)
Co10.0207 (9)0.0284 (9)0.0152 (8)0.0014 (7)0.0021 (7)0.0000 (7)
Br10.0685 (13)0.0820 (14)0.0784 (15)0.0148 (10)0.0233 (11)0.0000 (11)
Br20.0320 (8)0.0419 (8)0.0268 (7)0.0045 (6)0.0061 (6)0.0049 (6)
Br30.0342 (8)0.0514 (10)0.0363 (9)0.0058 (7)0.0046 (6)0.0074 (7)
Geometric parameters (Å, º) top
C1—N21.442 (15)C7—N51.427 (15)
C1—C21.52 (2)C7—H7A0.9600
C1—H1A0.9700C7—H7B0.9600
C1—H1B0.9700C7—H7C0.9600
C2—C31.51 (2)N1—Co11.977 (9)
C2—H2A0.9700N1—H1C0.9000
C2—H2B0.9700N1—H1D0.9000
C3—N11.436 (17)N2—Co12.012 (9)
C3—H3A0.9700N2—H2C0.9000
C3—H3B0.9700N2—H2D0.9000
C4—N31.467 (16)N3—Co12.010 (11)
C4—C51.61 (2)N3—H3C0.9000
C4—H4A0.9700N3—H3D0.9000
C4—H4B0.9700N4—Co11.967 (9)
C5—C61.56 (2)N4—H4C0.9000
C5—H5A0.9700N4—H4D0.9000
C5—H5B0.9700N5—Co11.973 (10)
C6—N41.429 (18)N5—H5C0.9000
C6—H6A0.9700N5—H5D0.9000
C6—H6B0.9700Co1—Br12.383 (2)
N2—C1—C2114.2 (12)Co1—N1—H1C106.2
N2—C1—H1A108.7C3—N1—H1D106.2
C2—C1—H1A108.7Co1—N1—H1D106.2
N2—C1—H1B108.7H1C—N1—H1D106.4
C2—C1—H1B108.7C1—N2—Co1124.1 (8)
H1A—C1—H1B107.6C1—N2—H2C106.3
C3—C2—C1114.9 (12)Co1—N2—H2C106.3
C3—C2—H2A108.6C1—N2—H2D106.3
C1—C2—H2A108.6Co1—N2—H2D106.3
C3—C2—H2B108.6H2C—N2—H2D106.4
C1—C2—H2B108.6C4—N3—Co1123.3 (9)
H2A—C2—H2B107.5C4—N3—H3C106.5
N1—C3—C2111.1 (11)Co1—N3—H3C106.5
N1—C3—H3A109.4C4—N3—H3D106.5
C2—C3—H3A109.4Co1—N3—H3D106.5
N1—C3—H3B109.4H3C—N3—H3D106.5
C2—C3—H3B109.4C6—N4—Co1121.5 (9)
H3A—C3—H3B108.0C6—N4—H4C107.0
N3—C4—C5107.0 (12)Co1—N4—H4C107.0
N3—C4—H4A110.3C6—N4—H4D107.0
C5—C4—H4A110.3Co1—N4—H4D107.0
N3—C4—H4B110.3H4C—N4—H4D106.7
C5—C4—H4B110.3C7—N5—Co1122.8 (8)
H4A—C4—H4B108.6C7—N5—H5C106.6
C6—C5—C4109.3 (13)Co1—N5—H5C106.6
C6—C5—H5A109.8C7—N5—H5D106.6
C4—C5—H5A109.8Co1—N5—H5D106.6
C6—C5—H5B109.8H5C—N5—H5D106.6
C4—C5—H5B109.8N4—Co1—N587.5 (4)
H5A—C5—H5B108.3N4—Co1—N1175.7 (4)
N4—C6—C5113.8 (12)N5—Co1—N188.7 (4)
N4—C6—H6A108.8N4—Co1—N393.9 (4)
C5—C6—H6A108.8N5—Co1—N3175.2 (4)
N4—C6—H6B108.8N1—Co1—N389.7 (4)
C5—C6—H6B108.8N4—Co1—N288.5 (4)
H6A—C6—H6B107.7N5—Co1—N295.5 (4)
N5—C7—H7A109.5N1—Co1—N293.9 (4)
N5—C7—H7B109.5N3—Co1—N289.1 (4)
H7A—C7—H7B109.5N4—Co1—Br189.7 (3)
N5—C7—H7C109.5N5—Co1—Br187.1 (3)
H7A—C7—H7C109.5N1—Co1—Br188.0 (3)
H7B—C7—H7C109.5N3—Co1—Br188.4 (3)
C3—N1—Co1124.5 (8)N2—Co1—Br1176.8 (3)
C3—N1—H1C106.2
N2—C1—C2—C363.7 (17)C7—N5—Co1—Br1167.0 (11)
C1—C2—C3—N168.7 (16)C3—N1—Co1—N4104 (6)
N3—C4—C5—C670.6 (16)C3—N1—Co1—N575.2 (11)
C4—C5—C6—N472.2 (17)C3—N1—Co1—N3109.4 (11)
C2—C3—N1—Co147.0 (15)C3—N1—Co1—N220.3 (11)
C2—C1—N2—Co135.9 (16)C3—N1—Co1—Br1162.3 (10)
C5—C4—N3—Co154.3 (15)C4—N3—Co1—N431.1 (11)
C5—C6—N4—Co151.8 (16)C4—N3—Co1—N576 (6)
C6—N4—Co1—N5148.1 (11)C4—N3—Co1—N1146.5 (11)
C6—N4—Co1—N1119 (5)C4—N3—Co1—N2119.5 (11)
C6—N4—Co1—N327.3 (11)C4—N3—Co1—Br158.5 (10)
C6—N4—Co1—N2116.4 (11)C1—N2—Co1—N4162.3 (10)
C6—N4—Co1—Br161.0 (11)C1—N2—Co1—N574.9 (10)
C7—N5—Co1—N477.1 (11)C1—N2—Co1—N114.2 (10)
C7—N5—Co1—N1105.0 (11)C1—N2—Co1—N3103.8 (10)
C7—N5—Co1—N3175 (5)C1—N2—Co1—Br1142 (5)
C7—N5—Co1—N211.1 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Br2i0.902.673.489 (11)152
N1—H1D···Br20.902.613.504 (10)174
N2—H2C···Br30.902.663.526 (10)162
N2—H2D···Br3ii0.902.643.419 (10)146
N3—H3C···Br30.902.533.406 (12)164
N3—H3D···Br20.902.593.482 (11)171
N4—H4C···Br2iii0.902.623.511 (10)170
N4—H4D···Br3ii0.902.493.379 (11)170
N5—H5C···Br2iii0.902.773.632 (11)160
N5—H5D···Br2i0.902.643.532 (12)170
C6—H6A···Br3iii0.972.913.773 (16)148
C7—H7B···Br1iv0.962.903.766 (13)150
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CoBr(CH5N)(C3H10N2)2]Br2
Mr477.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.4418 (2), 8.3088 (1), 15.1538 (2)
β (°) 110.61 (2)
V3)1584.16 (4)
Z4
Radiation typeMo Kα
µ (mm1)8.64
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.133, 0.194
No. of measured, independent and
observed [I > 2σ(I)] reflections
6000, 2784, 1701
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.238, 1.07
No. of reflections2784
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 2.69

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Br2i0.902.673.489 (11)152
N1—H1D···Br20.902.613.504 (10)174
N2—H2C···Br30.902.663.526 (10)162
N2—H2D···Br3ii0.902.643.419 (10)146
N3—H3C···Br30.902.533.406 (12)164
N3—H3D···Br20.902.593.482 (11)171
N4—H4C···Br2iii0.902.623.511 (10)170
N4—H4D···Br3ii0.902.493.379 (11)170
N5—H5C···Br2iii0.902.773.632 (11)160
N5—H5D···Br2i0.902.643.532 (12)170
C6—H6A···Br3iii0.972.913.773 (16)148
C7—H7B···Br1iv0.962.903.766 (13)150
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

KA is thankful to the CSIR, New Delhi [Lr: No. 01 (2570)/12/EMR-II/3.4.2012] for financial support through a major research project. The authors are thankful to the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

References

First citationAnbalagan, K. (2011). J. Phys. Chem. C, 115, 3821–3832.  Web of Science CrossRef CAS Google Scholar
First citationAnbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527.  Web of Science CrossRef PubMed Google Scholar
First citationChang, E. L., Simmers, C. & Knight, A. D. (2010). Pharmaceuticals, 3, 1711–1728.  CrossRef CAS Google Scholar
First citationDelehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickeya, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830–837.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaheshwaran, V., Manjunathan, M., Anbalagan, K., Thiruselvam, V. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, m205–m206.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRamesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRavichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSayed, G. H., Radwan, A., Mohamed, S. M., Shiba, S. A. & Kalil, M. (1992). Chin. J. Chem. 10, 475–480.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971–6975.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds