metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m276-m277

Bis[4-amino-N-(pyrimidin-2-yl-κN)benzene­sulfonamidato-κN](4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)cadmium di­methyl­formamide disolvate

aDepartment of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh, and bSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com

(Received 7 August 2011; accepted 2 February 2012; online 10 February 2012)

In the title compound, [Cd(C10H9N4O2S)2(C12H12N2)]·2C3H7NO, the CdII ion lies on a twofold rotation axis, is six-coordinated by N atoms, and displays a trigonal–prismatic geometry arising from the two sulfadiazinate ligands and one 4,4′-dimethyl-2,2′-bipyridine ligand. Both ligands are bidentate and coordinate via their N atoms. The O and carbonyl C atoms of the dimethyl­formamide mol­ecule show disorder and were modelled with two different orientations and with site occupancies of 0.584 (10):0.416 (10). The geometry around the sulfadiazine S atom is distorted tetra­hedral. The crystal structure involves N—H⋯O hydrogen bonds which link mol­ecules into a three-dimensional network. Weak C—H⋯O hydrogen bonds are also observed.

Related literature

For the comparison of the N—H bond distance of the terminal amine group and the C—S—N—C torsion angle, see: Heren et al. (2006[Heren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, o3437-o3439.]); Hossain & Amoroso (2007[Hossain, G. M. G. & Amoroso, A. J. (2007). Acta Cryst. E63, m759-m760.]); Hossain (2011[Hossain, G. M. G. (2011). Acta Cryst. E67, m505-m506.]). For the hydrogen bonds of sulfadiazinate anions, see: Paşaoğlu et al. (2008[Paşaoğlu, H., Kaştaş, G., Heren, Z. & Büyükgüngör, O. (2008). Acta Cryst. E64, m1192.]). For the comparison of the dihedral angle between the aromatic rings of the anion, see: Hossain & Amoroso (2007[Hossain, G. M. G. & Amoroso, A. J. (2007). Acta Cryst. E63, m759-m760.]); Hossain (2011[Hossain, G. M. G. (2011). Acta Cryst. E67, m505-m506.]). For the comparison of Cd—N bond distances, see: Kalateh et al. (2010[Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.]); Hossain (2011[Hossain, G. M. G. (2011). Acta Cryst. E67, m505-m506.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H9N4O2S)2(C12H12N2)]·2C3H7NO

  • Mr = 941.37

  • Monoclinic, C 2/c

  • a = 17.4428 (4) Å

  • b = 16.2753 (4) Å

  • c = 16.3873 (4) Å

  • β = 118.3334 (11)°

  • V = 4094.81 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 150 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.873, Tmax = 0.885

  • 18995 measured reflections

  • 4685 independent reflections

  • 3855 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.04

  • 4685 reflections

  • 297 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N1 2.312 (2)
Cd1—N11 2.251 (2)
Cd1—N12 2.505 (2)
N14—C18 1.360 (3)
N11i—Cd1—N11 116.97 (11)
N11—Cd1—N1i 128.97 (8)
N11—Cd1—N1 102.88 (8)
N1i—Cd1—N1 70.87 (11)
N11—Cd1—N12i 95.54 (7)
N1—Cd1—N12i 91.26 (7)
N11—Cd1—N12 56.10 (7)
N1—Cd1—N12 134.18 (8)
N12i—Cd1—N12 127.65 (9)
N13—C11—N12 125.7 (2)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14B⋯O1Dii 0.95 (1) 2.10 (1) 3.034 (7) 169 (3)
N14—H14B⋯O1ii 0.95 (1) 1.99 (2) 2.853 (5) 151 (3)
N14—H14A⋯O11iii 0.95 (1) 2.00 (1) 2.950 (3) 176 (3)
C12—H12⋯O12iv 0.95 2.48 3.393 (3) 162
C6—H6C⋯O1v 0.98 2.58 3.487 (5) 154
C6—H6A⋯N13vi 0.98 2.63 3.558 (4) 159
C8—H8A⋯O11vii 0.98 2.55 3.497 (4) 161
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The cadmium complex is six coordinate and shows trigonal prismatic rather than the octahedral structure as the cis and trans angles around the cadmium centre deviate considerably from the ideal octahedron [cis angle of 56.10 (7) cf. 90° and trans angle of 128.97 (8) cf. 180°]. The bond angles around the S atom correspond to a distorted tetrahedral geometry.

The bond distance C18–N14 of 1.359 (3)Å is comparable with the value of 1.366 (5)Å (Hossain, 2011). The torsion angle C15–S11–N11–C11 of 53.5 (2)° is less than the value of 66.1 (3)° and the dihedral angle between the aromatic rings of the anion of 76.60 (8)° is also smaller than the value of 88.65 (12)° in the sulfadiazinate anion (Hossain, 2011) because the large 4,4'-dimethyl-2,2'-bipyridine (dmbpy) ligand is attached to the Cd ion in the complex. Due to the presence of the larger dmbpy molecule the torsion and dihedral angles are reduced from the latter one where small dmf molecules are attached with the metal centre. In the title complex, (I), the O and formido C atoms of the solvated dimethylformamide show disorder and were modeled as two different orientations with site occupancies of 0.584 (10):0.416 (10).

Cd–N1(dmbpy) bond distance of 2.312 (2)Å is consistent with those for the reported dmbpy-Cd(II) complex, (Cd–N 2.366 (5) and 2.326 (4) Å)(Kalateh et al., 2010). Cd–N11(sulfonamido) bond distance of 2.252 (2)Å is relatively short (Hossain, 2011) and Cd—N12(pyrimido) with the value of 2.505 (2)Å is the longest bond in the complex.

The packing of (1) (Fig. 2) is stabilized by intermolecular N—H···O hydrogen bonds (Table 2) between the sdz anions (Paşaoğlu, et al., 2008) and dimethylformamide molecules.

Related literature top

For the comparison of the N—H bond distance of the terminal amine group and the C—S—N—C torsion angle, see: Heren et al. (2006); Hossain & Amoroso (2007); Hossain (2011). For the hydrogen bonds of sulfadiazinate anions, see: Paşaoğlu et al. (2008). For the comparison of the dihedral angle between the aromatic rings of the anion, see: Hossain & Amoroso (2007); Hossain (2011). For the comparison of Cd—N bond distances, see: Kalateh et al. (2010); Hossain (2011).

Experimental top

The sodium salt of sulfadiazine (Nasdz, 0.5446 g, 2 mmol) was dissolved in hot methanol (50 ml) and a methanol solution (10 ml) of (CH3COO)2Cd.2H2O (0.26647 g, 1 mmol) was added slowly with constant stirring on a hot plate. A white precipitate was formed and the mixture was stirred for a further 2 h. The precipitate was filtered off and dried over silica gel; it was then dissolved in dimethylsulfoxide solution (50 ml), and 4,4'-dimethyl-2,2'-bipyridine (0.1841 g, 1 mmol) was added, stirred for 10 min., filtered and left for crystallization. A week later, white block-shaped crystals of (1) were filtered off and dried over silica gel.

Refinement top

The O and formido C atoms of dimethylformamide show disorder and were modeled with two different orientations and site occupancies of 0.584 (10):0.416 (10). The H atoms were positioned geometrically and refined using a riding model [except terminal amino group N(14) which were located from the difference map and refined freely with the N—H distances of 0.948 (3) Å], with C—H = 0.95–0.98 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The disordered atoms are linked by dashed lines.
[Figure 2] Fig. 2. The packing of (I), viewed down the b-axis, showing one layer of molecules connected by N—H···O hydrogen bonds (dashed lines).
Bis[4-amino-N-(pyrimidin-2-yl-κN)benzenesulfonamidato- κN](4,4'-dimethyl-2,2'-bipyridine-κ2N,N')cadmium dimethylformamide monosolvate top
Crystal data top
[Cd(C10H9N4O2S)2(C12H12N2)]·2C3H7NOF(000) = 1936
Mr = 941.37Dx = 1.527 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4685 reflections
a = 17.4428 (4) Åθ = 2.9–27.5°
b = 16.2753 (4) ŵ = 0.70 mm1
c = 16.3873 (4) ÅT = 150 K
β = 118.3334 (11)°Block, white
V = 4094.81 (17) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4685 independent reflections
Radiation source: fine-focus sealed tube3855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 2222
Tmin = 0.873, Tmax = 0.885k = 2021
18995 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0369P)2 + 6.0396P]
where P = (Fo2 + 2Fc2)/3
4685 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.55 e Å3
30 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cd(C10H9N4O2S)2(C12H12N2)]·2C3H7NOV = 4094.81 (17) Å3
Mr = 941.37Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.4428 (4) ŵ = 0.70 mm1
b = 16.2753 (4) ÅT = 150 K
c = 16.3873 (4) Å0.20 × 0.20 × 0.18 mm
β = 118.3334 (11)°
Data collection top
Nonius KappaCCD
diffractometer
4685 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3855 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.885Rint = 0.070
18995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03830 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.55 e Å3
4685 reflectionsΔρmin = 0.59 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50000.285613 (15)0.25000.02672 (10)
S110.30729 (4)0.17732 (4)0.20921 (4)0.02384 (15)
O110.24693 (12)0.19449 (12)0.24412 (14)0.0332 (4)
O120.28358 (12)0.20915 (11)0.11776 (12)0.0311 (4)
N110.40303 (13)0.21330 (12)0.27493 (14)0.0242 (5)
N120.53497 (14)0.21773 (13)0.40087 (14)0.0253 (5)
N130.42490 (14)0.13244 (14)0.40597 (14)0.0282 (5)
N140.34151 (18)0.18335 (14)0.19655 (18)0.0384 (6)
C110.45350 (16)0.18555 (15)0.36375 (17)0.0231 (5)
C120.59239 (18)0.19244 (18)0.48605 (18)0.0330 (6)
H120.65000.21360.51420.040*
C130.56952 (19)0.13622 (19)0.53386 (19)0.0368 (7)
H130.61050.11710.59360.044*
C140.48492 (19)0.10921 (18)0.49108 (18)0.0331 (6)
H140.46770.07170.52380.040*
C150.31751 (15)0.07013 (15)0.20727 (16)0.0222 (5)
C160.26797 (16)0.01885 (16)0.23138 (17)0.0262 (5)
H160.22860.04170.25000.031*
C170.27577 (16)0.06534 (16)0.22831 (17)0.0268 (6)
H170.24120.10000.24440.032*
C180.33400 (17)0.10060 (16)0.20182 (16)0.0264 (6)
C190.38526 (18)0.04727 (16)0.17978 (18)0.0290 (6)
H190.42620.06960.16300.035*
C200.37690 (17)0.03677 (16)0.18217 (17)0.0259 (5)
H200.41160.07190.16670.031*
N10.42193 (15)0.40137 (14)0.17391 (15)0.0305 (5)
C10.45450 (17)0.47574 (16)0.21050 (18)0.0266 (6)
C20.40492 (17)0.54691 (16)0.17667 (18)0.0270 (6)
H20.42850.59850.20430.032*
C30.32125 (17)0.54268 (18)0.10280 (18)0.0298 (6)
C40.29046 (19)0.46709 (19)0.0646 (2)0.0375 (7)
H40.23410.46200.01270.045*
C50.34180 (19)0.39805 (19)0.1019 (2)0.0391 (7)
H50.31900.34600.07500.047*
C60.26532 (18)0.61872 (18)0.0669 (2)0.0358 (7)
H6A0.22440.62110.09210.054*
H6B0.23280.61670.00100.054*
H6C0.30250.66760.08630.054*
N20.52238 (17)0.33948 (15)0.96056 (17)0.0372 (6)
C80.4460 (2)0.3874 (3)0.9325 (4)0.0815 (15)
H8A0.39930.36530.87450.122*
H8B0.45800.44440.92280.122*
H8C0.42800.38560.98070.122*
C90.5952 (2)0.3585 (2)1.0476 (2)0.0591 (10)
H9A0.63980.31591.06380.089*
H9B0.57660.36101.09530.089*
H9C0.61940.41181.04350.089*
C70.5088 (5)0.2855 (3)0.8943 (4)0.0388 (16)0.584 (10)
H70.45310.28040.84150.047*0.584 (10)
O10.5723 (3)0.2409 (3)0.9032 (3)0.0543 (17)0.584 (10)
C7D0.5528 (7)0.2831 (6)0.9201 (7)0.049 (2)0.416 (10)
H7'0.60710.25890.96140.058*0.416 (10)
O1D0.5248 (4)0.2615 (4)0.8480 (5)0.054 (3)0.416 (10)
H14A0.3127 (18)0.2243 (13)0.213 (2)0.044 (9)*
H14B0.3791 (19)0.2145 (17)0.182 (3)0.060 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02882 (16)0.01675 (15)0.03504 (16)0.0000.01553 (12)0.000
S110.0178 (3)0.0207 (3)0.0262 (3)0.0004 (2)0.0049 (2)0.0001 (2)
O110.0238 (9)0.0312 (10)0.0451 (11)0.0031 (8)0.0167 (8)0.0055 (9)
O120.0249 (9)0.0288 (10)0.0266 (9)0.0017 (8)0.0016 (7)0.0067 (8)
N110.0202 (10)0.0206 (11)0.0244 (10)0.0030 (8)0.0047 (8)0.0018 (9)
N120.0205 (10)0.0239 (11)0.0252 (10)0.0010 (9)0.0057 (8)0.0039 (9)
N130.0298 (11)0.0270 (12)0.0243 (11)0.0017 (9)0.0101 (9)0.0010 (9)
N140.0512 (16)0.0190 (12)0.0487 (15)0.0013 (11)0.0268 (13)0.0009 (11)
C110.0221 (12)0.0189 (12)0.0240 (12)0.0014 (10)0.0074 (10)0.0032 (10)
C120.0257 (13)0.0362 (16)0.0269 (13)0.0034 (12)0.0043 (11)0.0045 (12)
C130.0341 (15)0.0438 (17)0.0228 (13)0.0078 (13)0.0057 (11)0.0012 (12)
C140.0428 (16)0.0298 (15)0.0280 (13)0.0024 (13)0.0179 (12)0.0028 (12)
C150.0188 (12)0.0200 (12)0.0222 (11)0.0014 (9)0.0050 (9)0.0004 (10)
C160.0197 (12)0.0293 (14)0.0265 (12)0.0015 (10)0.0085 (10)0.0000 (11)
C170.0231 (13)0.0280 (14)0.0255 (12)0.0051 (11)0.0084 (10)0.0032 (11)
C180.0300 (14)0.0233 (13)0.0199 (11)0.0032 (11)0.0068 (10)0.0011 (10)
C190.0341 (15)0.0267 (14)0.0309 (13)0.0002 (12)0.0191 (12)0.0018 (11)
C200.0282 (13)0.0241 (13)0.0286 (13)0.0048 (11)0.0159 (11)0.0008 (11)
N10.0304 (12)0.0213 (11)0.0362 (12)0.0023 (9)0.0128 (10)0.0008 (10)
C10.0267 (14)0.0255 (13)0.0290 (13)0.0021 (11)0.0143 (11)0.0015 (11)
C20.0315 (14)0.0211 (13)0.0296 (13)0.0046 (11)0.0154 (11)0.0025 (11)
C30.0259 (13)0.0370 (16)0.0270 (13)0.0012 (12)0.0129 (11)0.0004 (12)
C40.0290 (15)0.0374 (17)0.0379 (16)0.0034 (13)0.0092 (12)0.0008 (13)
C50.0338 (16)0.0275 (15)0.0447 (16)0.0060 (12)0.0095 (13)0.0008 (13)
C60.0289 (14)0.0339 (16)0.0377 (15)0.0005 (12)0.0103 (12)0.0018 (13)
N20.0423 (14)0.0328 (13)0.0374 (13)0.0080 (11)0.0195 (11)0.0039 (11)
C80.041 (2)0.056 (3)0.106 (4)0.0036 (19)0.002 (2)0.013 (2)
C90.0377 (18)0.059 (2)0.054 (2)0.0155 (17)0.0009 (16)0.0119 (18)
C70.0388 (18)0.0393 (18)0.0386 (18)0.0027 (10)0.0186 (11)0.0007 (10)
O10.0560 (19)0.0551 (19)0.0553 (19)0.0001 (10)0.0294 (12)0.0005 (9)
C7D0.049 (3)0.048 (3)0.049 (3)0.0000 (10)0.0236 (14)0.0008 (10)
O1D0.055 (3)0.055 (3)0.055 (3)0.0006 (10)0.0273 (15)0.0027 (10)
Geometric parameters (Å, º) top
Cd1—N12.312 (2)C19—H190.9500
Cd1—N112.251 (2)C20—H200.9500
Cd1—N11i2.251 (2)N1—C51.336 (4)
Cd1—N1i2.312 (2)N1—C11.350 (3)
Cd1—N12i2.505 (2)C1—C21.394 (4)
Cd1—N122.505 (2)C1—C1i1.498 (5)
S11—O111.444 (2)C2—C31.387 (4)
S11—O121.448 (2)C2—H20.9500
S11—N111.608 (2)C3—C41.369 (4)
S11—C151.755 (3)C3—C61.512 (4)
N11—C111.372 (3)C4—C51.385 (4)
N12—C121.339 (3)C4—H40.9500
N12—C111.358 (3)C5—H50.9500
N13—C141.341 (3)C6—H6A0.9800
N13—C111.342 (3)C6—H6B0.9800
N14—C181.360 (3)C6—H6C0.9800
N14—H14A0.948 (3)N2—C71.328 (6)
N14—H14B0.948 (3)N2—C7D1.377 (9)
C12—C131.381 (4)N2—C81.418 (5)
C12—H120.9500N2—C91.422 (4)
C13—C141.371 (4)C8—H8A0.9800
C13—H130.9500C8—H8B0.9800
C14—H140.9500C8—H8C0.9800
C15—C161.387 (4)C9—H9A0.9800
C15—C201.393 (4)C9—H9B0.9800
C16—C171.380 (4)C9—H9C0.9800
C16—H160.9500C7—O11.274 (9)
C17—C181.403 (4)C7—H70.9500
C17—H170.9500C7D—O1D1.101 (11)
C18—C191.411 (4)C7D—H7'0.9500
C19—C201.378 (4)
N11i—Cd1—N11116.97 (11)C20—C19—C18121.0 (2)
N11i—Cd1—N1i102.88 (8)C20—C19—H19119.5
N11—Cd1—N1i128.97 (8)C18—C19—H19119.5
N11i—Cd1—N1128.97 (8)C19—C20—C15119.9 (2)
N11—Cd1—N1102.88 (8)C19—C20—H20120.0
N1i—Cd1—N170.87 (11)C15—C20—H20120.0
N11i—Cd1—N12i56.10 (7)C5—N1—C1118.2 (2)
N11—Cd1—N12i95.54 (7)C5—N1—Cd1123.03 (19)
N1i—Cd1—N12i134.18 (8)C1—N1—Cd1118.35 (17)
N1—Cd1—N12i91.26 (7)N1—C1—C2121.2 (2)
N11i—Cd1—N1295.54 (7)N1—C1—C1i115.69 (15)
N11—Cd1—N1256.10 (7)C2—C1—C1i123.14 (15)
N1i—Cd1—N1291.26 (7)C3—C2—C1120.2 (2)
N1—Cd1—N12134.18 (8)C3—C2—H2119.9
N12i—Cd1—N12127.65 (9)C1—C2—H2119.9
O11—S11—O12115.91 (12)C4—C3—C2117.8 (3)
O11—S11—N11112.65 (12)C4—C3—C6121.1 (2)
O12—S11—N11104.99 (11)C2—C3—C6121.1 (3)
O11—S11—C15107.39 (12)C3—C4—C5119.7 (3)
O12—S11—C15108.56 (11)C3—C4—H4120.1
N11—S11—C15106.97 (11)C5—C4—H4120.1
C11—N11—S11122.04 (18)N1—C5—C4122.9 (3)
C11—N11—Cd1101.86 (15)N1—C5—H5118.5
S11—N11—Cd1134.42 (12)C4—C5—H5118.5
C12—N12—C11117.0 (2)C3—C6—H6A109.5
C12—N12—Cd1151.11 (19)C3—C6—H6B109.5
C11—N12—Cd190.87 (14)H6A—C6—H6B109.5
C14—N13—C11114.8 (2)C3—C6—H6C109.5
C18—N14—H14A126.8 (19)H6A—C6—H6C109.5
C18—N14—H14B130 (2)H6B—C6—H6C109.5
H14A—N14—H14B103 (2)C7—N2—C7D29.0 (4)
N13—C11—N12125.7 (2)C7—N2—C8108.8 (4)
N13—C11—N11123.4 (2)C7D—N2—C8136.6 (5)
N12—C11—N11110.9 (2)C7—N2—C9133.8 (4)
N12—C12—C13121.4 (3)C7D—N2—C9105.2 (5)
N12—C12—H12119.3C8—N2—C9117.4 (3)
C13—C12—H12119.3N2—C8—H8A109.5
C14—C13—C12116.9 (2)N2—C8—H8B109.5
C14—C13—H13121.5H8A—C8—H8B109.5
C12—C13—H13121.5N2—C8—H8C109.5
N13—C14—C13124.1 (3)H8A—C8—H8C109.5
N13—C14—H14117.9H8B—C8—H8C109.5
C13—C14—H14117.9N2—C9—H9A109.5
C16—C15—C20120.0 (2)N2—C9—H9B109.5
C16—C15—S11120.7 (2)H9A—C9—H9B109.5
C20—C15—S11119.26 (19)N2—C9—H9C109.5
C17—C16—C15120.1 (2)H9A—C9—H9C109.5
C17—C16—H16119.9H9B—C9—H9C109.5
C15—C16—H16119.9O1—C7—N2118.4 (6)
C16—C17—C18121.0 (2)O1—C7—H7120.8
C16—C17—H17119.5N2—C7—H7120.8
C18—C17—H17119.5O1D—C7D—N2130.8 (10)
N14—C18—C17122.0 (2)O1D—C7D—H7'114.6
N14—C18—C19120.1 (3)N2—C7D—H7'114.6
C17—C18—C19117.9 (2)
O11—S11—N11—C1164.3 (2)N11—S11—C15—C16124.8 (2)
O12—S11—N11—C11168.7 (2)O11—S11—C15—C20175.67 (19)
C15—S11—N11—C1153.5 (2)O12—S11—C15—C2058.3 (2)
O11—S11—N11—Cd1133.41 (16)N11—S11—C15—C2054.5 (2)
O12—S11—N11—Cd16.41 (19)C20—C15—C16—C171.6 (4)
C15—S11—N11—Cd1108.82 (17)S11—C15—C16—C17179.10 (19)
N11i—Cd1—N11—C1174.58 (14)C15—C16—C17—C180.6 (4)
N1i—Cd1—N11—C1162.58 (18)C16—C17—C18—N14178.7 (2)
N1—Cd1—N11—C11138.26 (15)C16—C17—C18—C190.9 (4)
N12i—Cd1—N11—C11129.18 (15)N14—C18—C19—C20178.2 (2)
N12—Cd1—N11—C113.22 (13)C17—C18—C19—C201.5 (4)
N11i—Cd1—N11—S1190.16 (16)C18—C19—C20—C150.4 (4)
N1i—Cd1—N11—S11132.68 (15)C16—C15—C20—C191.1 (4)
N1—Cd1—N11—S1157.01 (18)S11—C15—C20—C19179.6 (2)
N12i—Cd1—N11—S1135.56 (17)N11i—Cd1—N1—C593.2 (2)
N12—Cd1—N11—S11168.0 (2)N11—Cd1—N1—C548.3 (2)
N11i—Cd1—N12—C1249.8 (4)N1i—Cd1—N1—C5175.5 (3)
N11—Cd1—N12—C12168.7 (4)N12i—Cd1—N1—C547.6 (2)
N1i—Cd1—N12—C1253.3 (4)N12—Cd1—N1—C5103.2 (2)
N1—Cd1—N12—C12117.5 (4)N11i—Cd1—N1—C194.7 (2)
N12i—Cd1—N12—C12100.5 (4)N11—Cd1—N1—C1123.7 (2)
N11i—Cd1—N12—C11115.75 (15)N1i—Cd1—N1—C13.43 (14)
N11—Cd1—N12—C113.18 (13)N12i—Cd1—N1—C1140.3 (2)
N1i—Cd1—N12—C11141.18 (15)N12—Cd1—N1—C168.8 (2)
N1—Cd1—N12—C1177.01 (17)C5—N1—C1—C22.5 (4)
N12i—Cd1—N12—C1165.01 (13)Cd1—N1—C1—C2169.96 (19)
C14—N13—C11—N121.9 (4)C5—N1—C1—C1i178.4 (3)
C14—N13—C11—N11176.8 (2)Cd1—N1—C1—C1i9.1 (4)
C12—N12—C11—N132.0 (4)N1—C1—C2—C31.5 (4)
Cd1—N12—C11—N13174.2 (2)C1i—C1—C2—C3179.5 (3)
C12—N12—C11—N11176.8 (2)C1—C2—C3—C40.8 (4)
Cd1—N12—C11—N114.64 (19)C1—C2—C3—C6178.1 (2)
S11—N11—C11—N136.4 (3)C2—C3—C4—C51.9 (4)
Cd1—N11—C11—N13173.6 (2)C6—C3—C4—C5177.0 (3)
S11—N11—C11—N12172.46 (17)C1—N1—C5—C41.3 (5)
Cd1—N11—C11—N125.3 (2)Cd1—N1—C5—C4170.8 (2)
C11—N12—C12—C130.1 (4)C3—C4—C5—N11.0 (5)
Cd1—N12—C12—C13163.8 (3)C7D—N2—C7—O18.8 (9)
N12—C12—C13—C141.6 (4)C8—N2—C7—O1174.5 (5)
C11—N13—C14—C130.1 (4)C9—N2—C7—O13.4 (8)
C12—C13—C14—N131.7 (4)C7—N2—C7D—O1D24.3 (8)
O11—S11—C15—C163.6 (2)C8—N2—C7D—O1D4.4 (16)
O12—S11—C15—C16122.4 (2)C9—N2—C7D—O1D164.8 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14B···O1Dii0.95 (1)2.10 (1)3.034 (7)169 (3)
N14—H14B···O1ii0.95 (1)1.99 (2)2.853 (5)151 (3)
N14—H14A···O11iii0.95 (1)2.00 (1)2.950 (3)176 (3)
C12—H12···O12iv0.952.483.393 (3)162
C6—H6C···O1v0.982.583.487 (5)154
C6—H6A···N13vi0.982.633.558 (4)159
C8—H8A···O11vii0.982.553.497 (4)161
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C10H9N4O2S)2(C12H12N2)]·2C3H7NO
Mr941.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)17.4428 (4), 16.2753 (4), 16.3873 (4)
β (°) 118.3334 (11)
V3)4094.81 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.873, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
18995, 4685, 3855
Rint0.070
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.04
No. of reflections4685
No. of parameters297
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.59

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd1—N12.312 (2)Cd1—N122.505 (2)
Cd1—N112.251 (2)N14—C181.360 (3)
N11i—Cd1—N11116.97 (11)N1—Cd1—N12i91.26 (7)
N11—Cd1—N1i128.97 (8)N11—Cd1—N1256.10 (7)
N11—Cd1—N1102.88 (8)N1—Cd1—N12134.18 (8)
N1i—Cd1—N170.87 (11)N12i—Cd1—N12127.65 (9)
N11—Cd1—N12i95.54 (7)N13—C11—N12125.7 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14B···O1Dii0.948 (3)2.099 (9)3.034 (7)169 (3)
N14—H14B···O1ii0.948 (3)1.989 (18)2.853 (5)151 (3)
N14—H14A···O11iii0.948 (3)2.004 (5)2.950 (3)176 (3)
C12—H12···O12iv0.952.483.393 (3)162.0
C6—H6C···O1v0.982.583.487 (5)154.1
C6—H6A···N13vi0.982.633.558 (4)158.8
C8—H8A···O11vii0.982.553.497 (4)161.3
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1.
 

Acknowledgements

GMGH is grateful to the Ministry of Science, Information and Communication Technology for awarding the Bangabandhu Fellowship and to the School of Chemistry, Cardiff University, Wales, for crystallographic services.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, o3437–o3439.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHossain, G. M. G. (2011). Acta Cryst. E67, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHossain, G. M. G. & Amoroso, A. J. (2007). Acta Cryst. E63, m759–m760.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaşaoğlu, H., Kaştaş, G., Heren, Z. & Büyükgüngör, O. (2008). Acta Cryst. E64, m1192.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m276-m277
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds