organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­propyl­ammonium tri­thio­cyanurate

aKey Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, People's Republic of China
*Correspondence e-mail: yangyx80@nwnu.edu.cn

(Received 20 September 2010; accepted 29 September 2010; online 13 October 2010)

In the title compound (systematic name: tripropyl­azanium 2,4,6-tris­ulfanyl­idene­cyclo­hexan-1-ide), (C3H7)3HN+·C3H2N3S3, one H atom of trithio­cyanuric acid is accepted by tripropyl­amine to form the ammonium ion. Coplanar trithio­cyanurate and tripropyl­ammonium ions [dihedral angle = 82.33 (8)°] form the salt, which is stabilised by various N—H⋯S and N—H⋯N contacts.

Related literature

For the crystal structures of tetra­phenyl­phospho­nium salts of trithio­cyanuric acid, see: Dean et al. (2004[Dean, P. A. W., Jennings, M., Houle, T. M., Craig, D. C., Dance, I. G., Hook, J. M. & Scudder, M. L. (2004). CrystEngComm, 6, 543-548.]).

[Scheme 1]

Experimental

Crystal data
  • C9H22N+·C3H2N3S3

  • Mr = 320.53

  • Orthorhombic, P 21 21 21

  • a = 8.3677 (5) Å

  • b = 12.8827 (8) Å

  • c = 16.5339 (10) Å

  • V = 1782.33 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.61 × 0.27 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.788, Tmax = 0.919

  • 5690 measured reflections

  • 3675 independent reflections

  • 3232 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.03

  • 3675 reflections

  • 181 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1316 Friedel pairs

  • Flack parameter: −0.04 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N3 0.93 (1) 1.95 (1) 2.867 (2) 172 (3)
N1—H1⋯S2i 0.92 (1) 2.51 (1) 3.4037 (17) 167 (2)
N2—H2⋯S1ii 0.91 (1) 2.39 (1) 3.2911 (17) 170 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Trithiocyanuric acid, which can be regarded as the polymer of three thiourea molecules, tends to form various hydrogen bonds with its hydrogen-bond donor and acceptor (Dean et al. 2004). Here we reported the cocrystal of the tripropylammonium cation and trithiocyanurate with a molar ratio of 1:1, (C3H7)3HN+.C3H2N3S3-. In this structure, the independent planar trithiocyanurate anion only form a pair of N—H···S hydrogen bonds, of which N···S distances are 3.404 (2) Å and 3.291 (2) Å and the corresponding angles 166.6° and 169.7°, to generate the hydrogen-bonded ribbons along the b axis, and these ribbons which are translated by 21 rotation axis are orderly arranged almost along the (101) and (101)directions. Subsequently, the central N—H group of the ammonium cation can form an N—H···N donor hydrogen bond (N···N distance is 2.867 (2) Å and the related angle is 172.5°) with one of the nitrogen atom located in the trithiocyanurate to generate the final stable cocrystal.

Related literature top

For the crystal structures of tetraphenylphosphonium salts of trithiocyanuric acid, see: Dean et al. (2004).

Experimental top

Trithiocyanuric acid (0.044 g, 0.25 mmol) was dissolved in a water-ethanol (1:2 v/v) mixture and tripropylamine was added to neutralize the acid. Colorless block crystals formed after several weeks.

Refinement top

All hydrogen atoms bonded to carbon were introduced to idealized positions and allowed to ride on their parent atoms. Hydrogen atoms bonded to nitrogen were located in difference Fourier syntheses with N—H distance of 0.93 Å.

Structure description top

Trithiocyanuric acid, which can be regarded as the polymer of three thiourea molecules, tends to form various hydrogen bonds with its hydrogen-bond donor and acceptor (Dean et al. 2004). Here we reported the cocrystal of the tripropylammonium cation and trithiocyanurate with a molar ratio of 1:1, (C3H7)3HN+.C3H2N3S3-. In this structure, the independent planar trithiocyanurate anion only form a pair of N—H···S hydrogen bonds, of which N···S distances are 3.404 (2) Å and 3.291 (2) Å and the corresponding angles 166.6° and 169.7°, to generate the hydrogen-bonded ribbons along the b axis, and these ribbons which are translated by 21 rotation axis are orderly arranged almost along the (101) and (101)directions. Subsequently, the central N—H group of the ammonium cation can form an N—H···N donor hydrogen bond (N···N distance is 2.867 (2) Å and the related angle is 172.5°) with one of the nitrogen atom located in the trithiocyanurate to generate the final stable cocrystal.

For the crystal structures of tetraphenylphosphonium salts of trithiocyanuric acid, see: Dean et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen bond pattern in the crystal structure of the title compound; all hydrogen atoms bonded to carbon and carbon atoms of the tripropylammonium cation are omitted for clarity and the cations are represented with the hatched spheres.
Tripropylazanium 2,4,6-trisulfanylidenecyclohexan-1-ide top
Crystal data top
C9H22N+·C3H2N3S3F(000) = 688
Mr = 320.53Dx = 1.195 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 8.3677 (5) ŵ = 0.41 mm1
b = 12.8827 (8) ÅT = 296 K
c = 16.5339 (10) ÅBlock, colorless
V = 1782.33 (19) Å30.61 × 0.27 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3675 independent reflections
Radiation source: fine-focus sealed tube3232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
phi and ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 410
Tmin = 0.788, Tmax = 0.919k = 1616
5690 measured reflectionsl = 1719
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.057P)2 + 0.1498P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3675 reflectionsΔρmax = 0.24 e Å3
181 parametersΔρmin = 0.20 e Å3
3 restraintsAbsolute structure: Flack & Bernardinelli (2000), 1316 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Crystal data top
C9H22N+·C3H2N3S3V = 1782.33 (19) Å3
Mr = 320.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3677 (5) ŵ = 0.41 mm1
b = 12.8827 (8) ÅT = 296 K
c = 16.5339 (10) Å0.61 × 0.27 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3675 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3232 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.919Rint = 0.013
5690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.24 e Å3
S = 1.03Δρmin = 0.20 e Å3
3675 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1316 Friedel pairs
181 parametersAbsolute structure parameter: 0.04 (8)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.25770 (18)0.02494 (16)0.48456 (11)0.0513 (4)
H40.307 (3)0.020 (2)0.5345 (9)0.077*
C40.3656 (3)0.0945 (2)0.43528 (14)0.0603 (6)
H4A0.37710.16020.46340.072*
H4B0.47060.06290.43240.072*
C50.3087 (3)0.1159 (2)0.35052 (17)0.0726 (7)
H5A0.21160.15700.35250.087*
H5B0.28430.05090.32370.087*
C70.2386 (3)0.0818 (2)0.44928 (15)0.0596 (5)
H7A0.16800.07750.40290.072*
H7B0.18720.12590.48910.072*
C80.3920 (3)0.1327 (2)0.42319 (19)0.0756 (7)
H8A0.43430.09670.37630.091*
H8B0.47000.12750.46640.091*
C90.3658 (6)0.2448 (3)0.4026 (3)0.1228 (14)
H9A0.46520.27540.38620.184*
H9B0.28990.25000.35930.184*
H9C0.32550.28070.44920.184*
C100.0991 (2)0.0762 (2)0.50164 (16)0.0605 (5)
H10A0.11810.14690.51940.073*
H10B0.03800.07940.45180.073*
C110.0026 (4)0.0216 (3)0.5642 (2)0.0995 (11)
H11A0.01110.05010.54760.119*
H11B0.06200.02150.61450.119*
C120.1564 (4)0.0668 (4)0.5792 (3)0.1253 (15)
H12A0.21040.02720.62010.188*
H12B0.21780.06550.53020.188*
H12C0.14460.13730.59720.188*
C60.4346 (4)0.1736 (3)0.3029 (2)0.1079 (12)
H6A0.39620.18650.24920.162*
H6B0.53020.13250.30030.162*
H6C0.45760.23850.32910.162*
N10.5530 (2)0.05504 (13)0.74298 (10)0.0468 (4)
H10.579 (3)0.1170 (12)0.7667 (15)0.070*
N20.5353 (2)0.12080 (13)0.74422 (11)0.0456 (4)
H20.556 (3)0.1813 (12)0.7704 (14)0.068*
N30.40788 (18)0.02890 (11)0.64040 (10)0.0449 (3)
S10.40179 (9)0.17606 (4)0.63935 (4)0.06707 (19)
C10.4565 (2)0.05976 (15)0.67496 (12)0.0451 (4)
S20.37526 (8)0.23360 (4)0.63897 (4)0.06029 (17)
C20.5970 (2)0.03521 (15)0.77943 (11)0.0433 (4)
S30.71163 (7)0.03940 (5)0.86074 (4)0.06204 (17)
C30.4425 (2)0.12015 (15)0.67552 (13)0.0433 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0444 (8)0.0640 (11)0.0455 (10)0.0042 (8)0.0042 (7)0.0042 (9)
C40.0544 (12)0.0713 (15)0.0551 (14)0.0120 (11)0.0025 (10)0.0083 (11)
C50.0656 (15)0.0872 (18)0.0652 (17)0.0049 (12)0.0052 (13)0.0186 (14)
C70.0542 (12)0.0604 (14)0.0644 (14)0.0008 (10)0.0020 (10)0.0050 (12)
C80.0701 (16)0.0829 (19)0.0738 (18)0.0131 (14)0.0119 (14)0.0102 (14)
C90.135 (3)0.081 (2)0.153 (4)0.027 (2)0.041 (3)0.012 (2)
C100.0527 (11)0.0668 (14)0.0620 (14)0.0011 (11)0.0006 (10)0.0056 (12)
C110.0817 (19)0.111 (3)0.106 (2)0.0086 (19)0.0401 (18)0.022 (2)
C120.090 (2)0.151 (4)0.135 (3)0.003 (2)0.051 (2)0.023 (3)
C60.101 (2)0.139 (3)0.085 (2)0.013 (2)0.012 (2)0.042 (2)
N10.0544 (9)0.0391 (9)0.0470 (10)0.0028 (7)0.0065 (7)0.0042 (7)
N20.0514 (9)0.0403 (9)0.0452 (10)0.0020 (7)0.0070 (7)0.0003 (7)
N30.0556 (8)0.0365 (7)0.0425 (8)0.0003 (7)0.0068 (7)0.0030 (8)
S10.1045 (5)0.0372 (3)0.0596 (4)0.0009 (3)0.0251 (4)0.0006 (3)
C10.0522 (10)0.0395 (10)0.0435 (11)0.0010 (8)0.0003 (8)0.0020 (8)
S20.0818 (4)0.0363 (2)0.0627 (4)0.0006 (2)0.0236 (3)0.0047 (2)
C20.0377 (8)0.0468 (10)0.0454 (11)0.0006 (8)0.0006 (7)0.0032 (9)
S30.0603 (3)0.0634 (3)0.0624 (4)0.0002 (3)0.0234 (3)0.0022 (3)
C30.0455 (10)0.0404 (9)0.0441 (11)0.0015 (7)0.0009 (9)0.0029 (8)
Geometric parameters (Å, º) top
N4—C71.503 (3)C10—H10B0.9700
N4—C101.509 (3)C11—C121.474 (5)
N4—C41.511 (3)C11—H11A0.9700
N4—H40.925 (10)C11—H11B0.9700
C4—C51.506 (4)C12—H12A0.9600
C4—H4A0.9700C12—H12B0.9600
C4—H4B0.9700C12—H12C0.9600
C5—C61.510 (4)C6—H6A0.9600
C5—H5A0.9700C6—H6B0.9600
C5—H5B0.9700C6—H6C0.9600
C7—C81.504 (3)N1—C21.360 (3)
C7—H7A0.9700N1—C11.386 (3)
C7—H7B0.9700N1—H10.915 (10)
C8—C91.499 (5)N2—C21.350 (2)
C8—H8A0.9700N2—C31.376 (3)
C8—H8B0.9700N2—H20.908 (10)
C9—H9A0.9600N3—C11.341 (2)
C9—H9B0.9600N3—C31.343 (2)
C9—H9C0.9600S1—C11.674 (2)
C10—C111.489 (4)S2—C31.679 (2)
C10—H10A0.9700C2—S31.6525 (19)
C7—N4—C10112.32 (16)N4—C10—H10A108.9
C7—N4—C4113.42 (18)C11—C10—H10B108.9
C10—N4—C4111.51 (19)N4—C10—H10B108.9
C7—N4—H4109.2 (19)H10A—C10—H10B107.7
C10—N4—H4104.8 (17)C12—C11—C10114.8 (3)
C4—N4—H4104.9 (17)C12—C11—H11A108.6
C5—C4—N4114.92 (18)C10—C11—H11A108.6
C5—C4—H4A108.5C12—C11—H11B108.6
N4—C4—H4A108.5C10—C11—H11B108.6
C5—C4—H4B108.5H11A—C11—H11B107.5
N4—C4—H4B108.5C11—C12—H12A109.5
H4A—C4—H4B107.5C11—C12—H12B109.5
C4—C5—C6110.7 (2)H12A—C12—H12B109.5
C4—C5—H5A109.5C11—C12—H12C109.5
C6—C5—H5A109.5H12A—C12—H12C109.5
C4—C5—H5B109.5H12B—C12—H12C109.5
C6—C5—H5B109.5C5—C6—H6A109.5
H5A—C5—H5B108.1C5—C6—H6B109.5
N4—C7—C8114.8 (2)H6A—C6—H6B109.5
N4—C7—H7A108.6C5—C6—H6C109.5
C8—C7—H7A108.6H6A—C6—H6C109.5
N4—C7—H7B108.6H6B—C6—H6C109.5
C8—C7—H7B108.6C2—N1—C1123.70 (17)
H7A—C7—H7B107.5C2—N1—H1119.4 (17)
C9—C8—C7111.1 (3)C1—N1—H1116.6 (17)
C9—C8—H8A109.4C2—N2—C3124.54 (17)
C7—C8—H8A109.4C2—N2—H2115.0 (17)
C9—C8—H8B109.4C3—N2—H2120.4 (17)
C7—C8—H8B109.4C1—N3—C3119.75 (16)
H8A—C8—H8B108.0N3—C1—N1119.04 (17)
C8—C9—H9A109.5N3—C1—S1121.99 (15)
C8—C9—H9B109.5N1—C1—S1118.96 (15)
H9A—C9—H9B109.5N2—C2—N1113.81 (16)
C8—C9—H9C109.5N2—C2—S3123.12 (15)
H9A—C9—H9C109.5N1—C2—S3123.06 (15)
H9B—C9—H9C109.5N3—C3—N2118.95 (17)
C11—C10—N4113.6 (2)N3—C3—S2122.30 (15)
C11—C10—H10A108.9N2—C3—S2118.75 (15)
C7—N4—C4—C561.7 (3)C2—N1—C1—N32.8 (3)
C10—N4—C4—C566.3 (3)C2—N1—C1—S1176.22 (15)
N4—C4—C5—C6172.3 (3)C3—N2—C2—N13.0 (3)
C10—N4—C7—C8174.1 (2)C3—N2—C2—S3178.48 (15)
C4—N4—C7—C846.6 (3)C1—N1—C2—N21.3 (3)
N4—C7—C8—C9170.0 (3)C1—N1—C2—S3179.77 (16)
C7—N4—C10—C1163.9 (3)C1—N3—C3—N23.6 (3)
C4—N4—C10—C11167.5 (2)C1—N3—C3—S2175.92 (16)
N4—C10—C11—C12177.1 (3)C2—N2—C3—N30.7 (3)
C3—N3—C1—N15.2 (3)C2—N2—C3—S2179.76 (16)
C3—N3—C1—S1173.75 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N30.93 (1)1.95 (1)2.867 (2)172 (3)
N1—H1···S2i0.92 (1)2.51 (1)3.4037 (17)167 (2)
N2—H2···S1ii0.91 (1)2.39 (1)3.2911 (17)170 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H22N+·C3H2N3S3
Mr320.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.3677 (5), 12.8827 (8), 16.5339 (10)
V3)1782.33 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.61 × 0.27 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.788, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
5690, 3675, 3232
Rint0.013
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.03
No. of reflections3675
No. of parameters181
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.20
Absolute structureFlack & Bernardinelli (2000), 1316 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N30.925 (10)1.947 (11)2.867 (2)172 (3)
N1—H1···S2i0.915 (10)2.507 (12)3.4037 (17)167 (2)
N2—H2···S1ii0.908 (10)2.393 (11)3.2911 (17)170 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The author thanks the Key Laboratory of Eco-environment-related Polymer Materials of Northwest Normal University for supporting this work.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationDean, P. A. W., Jennings, M., Houle, T. M., Craig, D. C., Dance, I. G., Hook, J. M. & Scudder, M. L. (2004). CrystEngComm, 6, 543–548.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds