Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mol­ecular salt (alternative name: tetra­hydro­pyrimidin-2-ylideneammonium 2-oxobornane-10-sulfonate), C4H10N3+·C10H15O4S, the cation and anion inter­act by way of N—H...O hydrogen bonds, leading to chains propagating in the polar [010] direction containing R22(8) supra­molecular loops.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704442X/rn2027sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704442X/rn2027Isup2.hkl
Contains datablock I

CCDC reference: 663768

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.097
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT027_ALERT_3_B _diffrn_reflns_theta_full (too) Low ............ 24.99 Deg. PLAT111_ALERT_2_B ADDSYM Detects (Pseudo) Centre of Symmetry ..... 90 PerFi
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C4
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 24.99 From the CIF: _reflns_number_total 3003 Count of symmetry unique reflns 1662 Completeness (_total/calc) 180.69% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1341 Fraction of Friedel pairs measured 0.807 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C5 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I), is a molecular salt (Fig. 1). The C—N bond lengths in the cation [C11—N2 = 1.319 (5) Å, C11—N1 = 1.330 (3) Å, C11—N3 = 1.332 (5) Å] indicate delocalization of the electrons in the nominal C—N single bonds and CN+ double bond (see scheme) in a similar fashion to that seen in the CN3H6+ guanidinium cation. The bond angle sum at C11 is exactly 360°. The conformation of the six-membered ring of the cation is well described as an envelope, with C13 displaced by 0.632 (4) Å from C11/C12/C14/N2/N3 (r.m.s. deviation for these atoms = 0.002 Å). The configurations of the chiral carbon atoms in the camphor sulfonate anion are: C2 R and C5 S. Otherwise, (I) displays normal geometrical parameters (Allen et al., 1995).

In the crystal of (I), the components interact by way of N—H···O hydrogen bonds (Table 1) leading to infinite chains propagating in [010], with every cation and anion linked by two N—H···O bonds (Fig. 2), resulting in graph-theory (Bernstein et al., 1995) R22(8) loops.

Related literature top

For background, see: Bernstein et al. (1995). For reference structural data, see: Allen et al. (1995).

Experimental top

Aqueous solutions of tetrahydro-pyrimidin-2-ylidene-amine and camphor-10-sulfonic acid were mixed in stoichiometric quantities leading to a clear solution. Colourless faceted chunks of (I) grew over a few days as the water slowly evaporated.

Refinement top

A PLATON/checkcif analysis of (I) indicated pseudosymmetry at the 90% level. However, a centre of symmetry cannot be compatible with the chiral anion.

The N-bound H atoms were located in a difference map and their positions were freely refined with Uiso(H) = 1.2Ueq(N).

The C-bound H atoms were placed geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Structure description top

The title compound, (I), is a molecular salt (Fig. 1). The C—N bond lengths in the cation [C11—N2 = 1.319 (5) Å, C11—N1 = 1.330 (3) Å, C11—N3 = 1.332 (5) Å] indicate delocalization of the electrons in the nominal C—N single bonds and CN+ double bond (see scheme) in a similar fashion to that seen in the CN3H6+ guanidinium cation. The bond angle sum at C11 is exactly 360°. The conformation of the six-membered ring of the cation is well described as an envelope, with C13 displaced by 0.632 (4) Å from C11/C12/C14/N2/N3 (r.m.s. deviation for these atoms = 0.002 Å). The configurations of the chiral carbon atoms in the camphor sulfonate anion are: C2 R and C5 S. Otherwise, (I) displays normal geometrical parameters (Allen et al., 1995).

In the crystal of (I), the components interact by way of N—H···O hydrogen bonds (Table 1) leading to infinite chains propagating in [010], with every cation and anion linked by two N—H···O bonds (Fig. 2), resulting in graph-theory (Bernstein et al., 1995) R22(8) loops.

For background, see: Bernstein et al. (1995). For reference structural data, see: Allen et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (40% displacement ellipsoids, arbitrary spheres for the H atoms, hydrogen bonds indicated by double dashed lines).
[Figure 2] Fig. 2. Detail of (I) showing an [010] hydrogen-bonded chain containing R22(8) loops. Atoms marked with a * suffix are at the symmetry position (x, y - 1, z).
Tetrahydropyrimidin-2-ylideneammonium 2-oxobornane-10-sulfonate top
Crystal data top
C4H10N3+·C10H15O4SF(000) = 356
Mr = 331.43Dx = 1.267 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3004 reflections
a = 7.4207 (4) Åθ = 2.8–25.0°
b = 7.3115 (4) ŵ = 0.21 mm1
c = 16.421 (1) ÅT = 293 K
β = 102.899 (1)°Faceted chunk, colourless
V = 868.46 (9) Å30.32 × 0.26 × 0.17 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
3003 independent reflections
Radiation source: fine-focus sealed tube2630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 88
Tmin = 0.860, Tmax = 0.967k = 88
5301 measured reflectionsl = 1619
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0964P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3003 reflectionsΔρmax = 0.15 e Å3
214 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), with 1341 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.17 (9)
Crystal data top
C4H10N3+·C10H15O4SV = 868.46 (9) Å3
Mr = 331.43Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.4207 (4) ŵ = 0.21 mm1
b = 7.3115 (4) ÅT = 293 K
c = 16.421 (1) Å0.32 × 0.26 × 0.17 mm
β = 102.899 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3003 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2630 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.967Rint = 0.017
5301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.15 e Å3
S = 1.09Δρmin = 0.30 e Å3
3003 reflectionsAbsolute structure: Flack (1983), with 1341 Friedel pairs
214 parametersAbsolute structure parameter: 0.17 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5794 (3)0.3098 (6)0.20808 (13)0.0443 (5)
H1A0.47560.22580.19700.053*
H1B0.53070.43010.19040.053*
C20.7072 (3)0.2553 (3)0.15159 (16)0.0429 (6)
C30.6026 (4)0.2795 (4)0.06007 (18)0.0592 (9)
C40.7455 (5)0.2783 (7)0.00768 (19)0.0804 (13)
H410.74830.39410.02090.096*
H420.72330.18020.03310.096*
C50.9240 (5)0.2470 (4)0.07361 (19)0.0636 (8)
H511.03740.27950.05570.062 (8)*
C60.9151 (5)0.0456 (5)0.1020 (2)0.0736 (10)
H610.88000.03550.05430.088*
H621.03300.00630.13590.088*
C70.7654 (5)0.0506 (4)0.1535 (2)0.0567 (7)
H710.81480.01000.21040.068*
H720.66120.02630.12850.068*
C80.8908 (4)0.3566 (4)0.14960 (17)0.0496 (8)
C90.8664 (5)0.5612 (4)0.1348 (3)0.0729 (10)
H910.97280.60980.11810.109*
H920.85290.61990.18540.109*
H930.75810.58330.09160.109*
C101.0493 (3)0.3306 (7)0.22651 (17)0.0639 (7)
H1011.16400.36490.21300.096*
H1021.05500.20460.24340.096*
H1031.02800.40590.27130.096*
S10.66387 (7)0.31798 (11)0.31831 (3)0.03870 (15)
O10.7694 (3)0.4848 (3)0.33660 (15)0.0523 (6)
O20.7726 (3)0.1533 (3)0.34393 (14)0.0505 (6)
O30.4966 (2)0.3208 (4)0.35201 (10)0.0505 (4)
O40.4382 (3)0.2951 (6)0.03598 (13)0.0893 (8)
C110.4246 (3)0.8182 (6)0.38435 (16)0.0498 (5)
C120.1889 (5)0.6527 (5)0.4365 (2)0.0538 (9)
H12A0.22670.64270.49690.065*
H12B0.11680.54520.41560.065*
C130.0735 (3)0.8206 (6)0.41374 (18)0.0586 (6)
H13A0.02580.82110.44350.070*
H13B0.01850.81950.35430.070*
C140.1890 (4)0.9908 (4)0.4354 (2)0.0505 (8)
H14A0.11711.09760.41310.061*
H14B0.22621.00390.49560.061*
N10.5722 (3)0.8172 (6)0.3510 (2)0.0822 (9)
H10.629 (6)0.699 (7)0.345 (3)0.099*
H20.627 (7)0.906 (7)0.350 (3)0.099*
N20.3515 (4)0.6619 (4)0.4010 (2)0.0517 (8)
H30.378 (4)0.570 (5)0.383 (2)0.062*
N30.3521 (4)0.9775 (4)0.4001 (2)0.0527 (8)
H40.408 (5)1.070 (5)0.394 (2)0.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0366 (10)0.0506 (13)0.0443 (11)0.0004 (17)0.0063 (9)0.0012 (17)
C20.0437 (13)0.0438 (14)0.0405 (13)0.0009 (10)0.0080 (10)0.0017 (10)
C30.0616 (17)0.063 (3)0.0484 (15)0.0021 (15)0.0024 (12)0.0016 (14)
C40.093 (2)0.106 (4)0.0437 (15)0.007 (2)0.0184 (15)0.0050 (19)
C50.0656 (18)0.077 (2)0.0562 (17)0.0009 (15)0.0305 (15)0.0032 (15)
C60.095 (3)0.065 (2)0.073 (2)0.012 (2)0.045 (2)0.0148 (18)
C70.0696 (19)0.0443 (16)0.0607 (19)0.0002 (15)0.0238 (15)0.0062 (14)
C80.0461 (13)0.052 (2)0.0529 (14)0.0002 (12)0.0152 (11)0.0028 (12)
C90.080 (2)0.0486 (19)0.093 (3)0.0117 (18)0.024 (2)0.0163 (19)
C100.0382 (12)0.089 (2)0.0655 (16)0.007 (2)0.0128 (11)0.001 (2)
S10.0374 (3)0.0358 (3)0.0450 (3)0.0025 (4)0.0135 (2)0.0019 (4)
O10.0490 (14)0.0429 (12)0.0678 (16)0.0062 (11)0.0189 (11)0.0168 (11)
O20.0507 (14)0.0494 (13)0.0523 (13)0.0151 (11)0.0134 (11)0.0076 (10)
O30.0512 (8)0.0438 (8)0.0642 (10)0.0014 (14)0.0293 (7)0.0024 (13)
O40.0631 (12)0.134 (2)0.0595 (12)0.004 (2)0.0109 (10)0.0016 (19)
C110.0422 (11)0.0410 (11)0.0669 (14)0.003 (2)0.0134 (10)0.004 (2)
C120.054 (2)0.053 (2)0.057 (2)0.0091 (17)0.0194 (17)0.0034 (17)
C130.0465 (12)0.0590 (15)0.0738 (16)0.000 (2)0.0210 (11)0.002 (2)
C140.047 (2)0.045 (2)0.060 (2)0.0069 (15)0.0136 (16)0.0022 (16)
N10.0653 (14)0.0459 (13)0.153 (3)0.001 (2)0.0619 (16)0.001 (3)
N20.0480 (18)0.0379 (17)0.072 (2)0.0020 (14)0.0194 (15)0.0073 (14)
N30.051 (2)0.0336 (16)0.078 (2)0.0030 (14)0.0253 (16)0.0037 (14)
Geometric parameters (Å, º) top
C1—C21.520 (3)C9—H930.9600
C1—S11.779 (2)C10—H1010.9600
C1—H1A0.9700C10—H1020.9600
C1—H1B0.9700C10—H1030.9600
C2—C31.540 (4)S1—O11.444 (2)
C2—C71.556 (4)S1—O21.458 (2)
C2—C81.558 (3)S1—O31.4678 (14)
C3—O41.201 (3)C11—N21.319 (5)
C3—C41.507 (4)C11—N11.330 (3)
C4—C51.529 (5)C11—N31.332 (5)
C4—H410.9700C12—N21.454 (4)
C4—H420.9700C12—C131.496 (5)
C5—C81.548 (4)C12—H12A0.9700
C5—C61.550 (5)C12—H12B0.9700
C5—H510.9800C13—C141.508 (5)
C6—C71.540 (4)C13—H13A0.9700
C6—H610.9700C13—H13B0.9700
C6—H620.9700C14—N31.458 (4)
C7—H710.9700C14—H14A0.9700
C7—H720.9700C14—H14B0.9700
C8—C91.520 (4)N1—H10.98 (5)
C8—C101.533 (4)N1—H20.77 (5)
C9—H910.9600N2—H30.78 (4)
C9—H920.9600N3—H40.81 (4)
C2—C1—S1120.23 (15)H91—C9—H92109.5
C2—C1—H1A107.3C8—C9—H93109.5
S1—C1—H1A107.3H91—C9—H93109.5
C2—C1—H1B107.3H92—C9—H93109.5
S1—C1—H1B107.3C8—C10—H101109.5
H1A—C1—H1B106.9C8—C10—H102109.5
C1—C2—C3108.6 (2)H101—C10—H102109.5
C1—C2—C7116.6 (2)C8—C10—H103109.5
C3—C2—C7102.0 (2)H101—C10—H103109.5
C1—C2—C8123.8 (2)H102—C10—H103109.5
C3—C2—C8100.2 (2)O1—S1—O2113.46 (10)
C7—C2—C8102.6 (2)O1—S1—O3112.00 (13)
O4—C3—C4127.2 (3)O2—S1—O3111.28 (14)
O4—C3—C2125.9 (3)O1—S1—C1106.94 (16)
C4—C3—C2106.9 (2)O2—S1—C1108.20 (15)
C3—C4—C5101.8 (2)O3—S1—C1104.38 (10)
C3—C4—H41111.4N2—C11—N1119.7 (4)
C5—C4—H41111.4N2—C11—N3120.9 (2)
C3—C4—H42111.4N1—C11—N3119.4 (4)
C5—C4—H42111.4N2—C12—C13110.0 (3)
H41—C4—H42109.3N2—C12—H12A109.7
C4—C5—C8103.0 (3)C13—C12—H12A109.7
C4—C5—C6105.5 (3)N2—C12—H12B109.7
C8—C5—C6103.0 (2)C13—C12—H12B109.7
C4—C5—H51114.7H12A—C12—H12B108.2
C8—C5—H51114.7C12—C13—C14110.76 (19)
C6—C5—H51114.7C12—C13—H13A109.5
C7—C6—C5103.1 (2)C14—C13—H13A109.5
C7—C6—H61111.1C12—C13—H13B109.5
C5—C6—H61111.1C14—C13—H13B109.5
C7—C6—H62111.1H13A—C13—H13B108.1
C5—C6—H62111.1N3—C14—C13109.3 (2)
H61—C6—H62109.1N3—C14—H14A109.8
C6—C7—C2104.0 (2)C13—C14—H14A109.8
C6—C7—H71111.0N3—C14—H14B109.8
C2—C7—H71111.0C13—C14—H14B109.8
C6—C7—H72111.0H14A—C14—H14B108.3
C2—C7—H72111.0C11—N1—H1118 (3)
H71—C7—H72109.0C11—N1—H2120 (4)
C9—C8—C10107.2 (3)H1—N1—H2120 (3)
C9—C8—C5114.6 (3)C11—N2—C12122.7 (3)
C10—C8—C5111.6 (3)C11—N2—H3121 (3)
C9—C8—C2113.4 (2)C12—N2—H3114 (3)
C10—C8—C2115.9 (2)C11—N3—C14122.9 (3)
C5—C8—C293.9 (2)C11—N3—H4118 (3)
C8—C9—H91109.5C14—N3—H4119 (3)
C8—C9—H92109.5
S1—C1—C2—C3174.3 (2)C4—C5—C8—C255.4 (3)
S1—C1—C2—C771.4 (3)C6—C5—C8—C254.1 (3)
S1—C1—C2—C857.5 (4)C1—C2—C8—C953.8 (3)
C1—C2—C3—O416.5 (5)C3—C2—C8—C966.8 (3)
C7—C2—C3—O4107.2 (4)C7—C2—C8—C9171.7 (3)
C8—C2—C3—O4147.5 (4)C1—C2—C8—C1070.9 (3)
C1—C2—C3—C4163.9 (3)C3—C2—C8—C10168.5 (3)
C7—C2—C3—C472.5 (3)C7—C2—C8—C1063.6 (3)
C8—C2—C3—C432.8 (3)C1—C2—C8—C5172.8 (2)
O4—C3—C4—C5177.9 (4)C3—C2—C8—C552.1 (2)
C2—C3—C4—C51.8 (4)C7—C2—C8—C552.7 (2)
C3—C4—C5—C836.4 (3)C2—C1—S1—O177.3 (3)
C3—C4—C5—C671.2 (3)C2—C1—S1—O245.2 (3)
C4—C5—C6—C771.9 (3)C2—C1—S1—O3163.9 (3)
C8—C5—C6—C735.8 (3)N2—C12—C13—C1451.8 (3)
C5—C6—C7—C21.5 (3)C12—C13—C14—N351.3 (3)
C1—C2—C7—C6171.4 (2)N1—C11—N2—C12179.2 (3)
C3—C2—C7—C670.6 (3)N3—C11—N2—C120.4 (4)
C8—C2—C7—C632.9 (3)C13—C12—N2—C1126.5 (4)
C4—C5—C8—C962.6 (3)N2—C11—N3—C140.6 (4)
C6—C5—C8—C9172.1 (3)N1—C11—N3—C14179.0 (3)
C4—C5—C8—C10175.3 (3)C13—C14—N3—C1125.8 (4)
C6—C5—C8—C1065.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.98 (5)1.90 (5)2.873 (5)173 (4)
N1—H2···O2i0.77 (5)2.12 (5)2.888 (5)178 (6)
N2—H3···O30.78 (4)2.13 (4)2.900 (4)169 (3)
N3—H4···O3i0.81 (4)2.11 (4)2.908 (4)165 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC4H10N3+·C10H15O4S
Mr331.43
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.4207 (4), 7.3115 (4), 16.421 (1)
β (°) 102.899 (1)
V3)868.46 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.32 × 0.26 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.860, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
5301, 3003, 2630
Rint0.017
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.09
No. of reflections3003
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.30
Absolute structureFlack (1983), with 1341 Friedel pairs
Absolute structure parameter0.17 (9)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.98 (5)1.90 (5)2.873 (5)173 (4)
N1—H2···O2i0.77 (5)2.12 (5)2.888 (5)178 (6)
N2—H3···O30.78 (4)2.13 (4)2.900 (4)169 (3)
N3—H4···O3i0.81 (4)2.11 (4)2.908 (4)165 (3)
Symmetry code: (i) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds