Download citation
Download citation
link to html
The structures of the red polymorph (space group P1) and the black polymorph (space group P21/c) of 4,4′-di­methyl-6,6′-di­chloro­thio­indigo were solved from single-crystal samples. For both polymorphs, the spatial stacking of the flat molecules is driven by π-stacking and noncovalent interactions within the layers. Spectroscopic (UV–vis, IR and photoluminescence) and thermal properties of the red polymorph were investigated experimentally. The bandgap of this polymorph was estimated as 2.08 eV at room temperature. It is demonstrated that the electric conductivity of the red polymorph follows the hopping mechanism.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620014869/rm5041sup1.cif
Contains datablocks global, 1, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620014869/rm50411sup2.hkl
Red polymorph 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620014869/rm50412sup3.hkl
Black polymorph 2

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520620014869/rm5041sup4.pdf
Figures S1, S2 and S3 and Tables S1, S2 and S3

CCDC references: 2000467; 2000468

Computing details top

For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(1) top
Crystal data top
C18H10Cl2O2S2F(000) = 400
Mr = 393.28Dx = 1.740 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.6455 (3) ÅCell parameters from 1880 reflections
b = 15.9427 (8) Åθ = 2.4–28.3°
c = 10.1908 (6) ŵ = 0.72 mm1
β = 95.846 (4)°T = 130 K
V = 750.82 (8) Å3Black needle, black
Z = 20.35 × 0.11 × 0.08 mm
Data collection top
BRUKER AXS (Kappa APEX II Duo)
diffractometer
1410 reflections with I > 2σ(I)
Radiation source: conventional tubeRint = 0.056
Graphite monochromatorθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
Blessing, 1995
h = 66
Tmin = 0.788, Tmax = 0.948k = 2121
12979 measured reflectionsl = 1313
1882 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.107P)2 + 2.7825P]
where P = (Fo2 + 2Fc2)/3
1882 reflections(Δ/σ)max = 0.002
115 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2746 (2)0.54976 (6)0.35512 (10)0.0121 (3)
Cl10.8916 (3)0.39280 (9)0.00068 (13)0.0337 (4)
O10.0020 (6)0.34048 (17)0.4845 (3)0.0160 (6)
C20.4055 (8)0.4608 (2)0.2771 (4)0.0123 (8)
C30.5920 (8)0.4662 (3)0.1779 (4)0.0139 (8)
H30.65910.51860.14880.016 (12)*
C40.3911 (9)0.3087 (2)0.2646 (4)0.0140 (8)
C50.5771 (9)0.3137 (3)0.1649 (4)0.0158 (8)
H50.63800.26390.12460.019 (13)*
C60.3085 (8)0.3837 (2)0.3201 (4)0.0120 (7)
C70.0834 (8)0.4858 (2)0.4533 (4)0.0111 (7)
C90.6729 (8)0.3913 (3)0.1248 (4)0.0164 (8)
C100.2851 (9)0.2253 (3)0.3056 (5)0.0189 (9)
H10A0.35990.18130.25120.043 (18)*
H10B0.07310.22460.29410.06 (2)*
H10C0.35280.21530.39860.05 (2)*
C110.1172 (8)0.3945 (2)0.4246 (4)0.0115 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0126 (5)0.0118 (4)0.0126 (5)0.0004 (3)0.0042 (3)0.0006 (4)
Cl10.0283 (7)0.0453 (8)0.0287 (7)0.0051 (5)0.0093 (5)0.0022 (5)
O10.0210 (15)0.0108 (13)0.0168 (15)0.0000 (11)0.0047 (11)0.0001 (11)
C20.0082 (17)0.0157 (18)0.0131 (19)0.0000 (13)0.0006 (14)0.0027 (14)
C30.0103 (18)0.0192 (19)0.0125 (19)0.0010 (14)0.0030 (14)0.0003 (15)
C40.0137 (18)0.0159 (18)0.0117 (19)0.0054 (14)0.0015 (15)0.0013 (15)
C50.0158 (19)0.019 (2)0.0122 (19)0.0081 (15)0.0004 (15)0.0050 (15)
C60.0105 (17)0.0145 (18)0.0110 (18)0.0022 (14)0.0004 (14)0.0012 (14)
C70.0102 (16)0.0116 (17)0.0114 (18)0.0009 (13)0.0002 (14)0.0016 (14)
C90.0107 (18)0.028 (2)0.0103 (19)0.0032 (15)0.0013 (14)0.0041 (16)
C100.022 (2)0.0146 (19)0.020 (2)0.0052 (15)0.0025 (17)0.0009 (16)
C110.0093 (16)0.0131 (17)0.0118 (18)0.0030 (13)0.0008 (14)0.0019 (14)
Geometric parameters (Å, º) top
S1—C71.735 (4)C4—C101.492 (6)
S1—C21.764 (4)C5—C91.390 (6)
Cl1—C91.713 (4)C5—H50.9500
O1—C111.221 (5)C6—C111.465 (5)
C2—C61.395 (5)C7—C7i1.365 (7)
C2—C31.399 (5)C7—C111.495 (5)
C3—C91.379 (6)C10—H10A0.9800
C3—H30.9500C10—H10B0.9800
C4—C61.394 (5)C10—H10C0.9800
C4—C51.402 (6)
C7—S1—C290.41 (18)C7i—C7—C11122.6 (4)
C6—C2—C3121.6 (4)C7i—C7—S1124.5 (4)
C6—C2—S1115.5 (3)C11—C7—S1112.9 (3)
C3—C2—S1122.9 (3)C3—C9—C5123.2 (4)
C9—C3—C2116.3 (4)C3—C9—Cl1119.1 (3)
C9—C3—H3121.8C5—C9—Cl1117.6 (3)
C2—C3—H3121.8C4—C10—H10A109.5
C6—C4—C5117.4 (4)C4—C10—H10B109.5
C6—C4—C10122.6 (4)H10A—C10—H10B109.5
C5—C4—C10120.0 (4)C4—C10—H10C109.5
C9—C5—C4120.2 (4)H10A—C10—H10C109.5
C9—C5—H5119.9H10B—C10—H10C109.5
C4—C5—H5119.9O1—C11—C6128.3 (4)
C4—C6—C2121.2 (4)O1—C11—C7121.8 (3)
C4—C6—C11127.5 (4)C6—C11—C7109.9 (3)
C2—C6—C11111.3 (3)
Symmetry code: (i) x, y+1, z+1.
(2) top
Crystal data top
C18H10Cl2O2S2Z = 1
Mr = 393.28F(000) = 200
Triclinic, P1Dx = 1.714 Mg m3
a = 3.8612 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.8249 (3) ÅCell parameters from 1288 reflections
c = 11.2319 (5) Åθ = 4.0–66.5°
α = 94.972 (3)°µ = 6.47 mm1
β = 92.244 (3)°T = 130 K
γ = 90.968 (3)°Red needle, red
V = 380.91 (3) Å30.17 × 0.04 × 0.03 mm
Data collection top
BRUKER AXS (Kappa APEX II Duo)
diffractometer
1141 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 66.6°, θmin = 4.0°
Absorption correction: multi-scan
Blessing 1995
h = 44
Tmin = 0.409, Tmax = 0.820k = 810
5028 measured reflectionsl = 1213
1290 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 0.72 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.9825P]
where P = (Fo2 + 2Fc2)/3
1290 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75448 (14)1.07494 (6)0.83555 (5)0.01482 (19)
Cl40.11393 (15)0.75465 (6)0.44718 (5)0.02008 (19)
O20.9293 (4)0.71215 (18)0.99625 (15)0.0192 (4)
C10.4183 (6)0.9049 (3)0.6432 (2)0.0154 (5)
H10.37800.99580.60580.018 (7)*
C30.9117 (6)0.9700 (3)0.9499 (2)0.0136 (5)
C40.5212 (6)0.6313 (3)0.7568 (2)0.0146 (5)
C50.8327 (6)0.8034 (3)0.9265 (2)0.0146 (5)
C60.3118 (6)0.7640 (3)0.5898 (2)0.0160 (5)
C70.5879 (6)0.9063 (3)0.7551 (2)0.0150 (5)
C80.6397 (6)0.7732 (3)0.8113 (2)0.0146 (5)
C90.3587 (6)0.6290 (3)0.6439 (2)0.0162 (5)
H90.27910.53510.60350.022 (7)*
C100.5632 (7)0.4874 (3)0.8172 (2)0.0196 (5)
H10A0.47090.40110.76390.042 (9)*
H10B0.43650.49460.89130.024 (7)*
H10C0.80960.47240.83590.036 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0165 (3)0.0119 (3)0.0156 (3)0.0004 (2)0.0026 (2)0.0005 (2)
Cl40.0218 (3)0.0208 (3)0.0168 (3)0.0023 (2)0.0056 (2)0.0004 (2)
O20.0220 (9)0.0157 (8)0.0196 (9)0.0006 (7)0.0040 (7)0.0021 (7)
C10.0148 (11)0.0149 (12)0.0172 (12)0.0018 (9)0.0011 (10)0.0043 (9)
C30.0117 (11)0.0128 (11)0.0164 (11)0.0013 (9)0.0017 (9)0.0013 (9)
C40.0120 (11)0.0154 (11)0.0165 (12)0.0015 (9)0.0035 (9)0.0003 (9)
C50.0125 (11)0.0158 (11)0.0156 (12)0.0012 (9)0.0027 (9)0.0003 (9)
C60.0110 (11)0.0218 (12)0.0147 (12)0.0021 (9)0.0003 (9)0.0011 (9)
C70.0110 (11)0.0164 (11)0.0174 (12)0.0003 (9)0.0020 (9)0.0007 (9)
C80.0123 (11)0.0154 (11)0.0160 (12)0.0005 (9)0.0021 (9)0.0003 (9)
C90.0153 (11)0.0135 (11)0.0192 (12)0.0013 (9)0.0010 (9)0.0022 (9)
C100.0241 (13)0.0129 (11)0.0215 (13)0.0019 (10)0.0032 (10)0.0022 (9)
Geometric parameters (Å, º) top
S1—C31.744 (2)C4—C81.407 (3)
S1—C71.771 (2)C4—C101.499 (3)
Cl4—C61.742 (2)C5—C81.469 (3)
O2—C51.224 (3)C6—C91.395 (3)
C1—C61.382 (3)C7—C81.394 (3)
C1—C71.393 (3)C9—H90.9500
C1—H10.9500C10—H10A0.9800
C3—C3i1.355 (5)C10—H10B0.9800
C3—C51.495 (3)C10—H10C0.9800
C4—C91.391 (3)
C3—S1—C790.39 (11)C1—C7—C8121.8 (2)
C6—C1—C7116.3 (2)C1—C7—S1122.94 (18)
C6—C1—H1121.8C8—C7—S1115.24 (18)
C7—C1—H1121.8C7—C8—C4121.0 (2)
C3i—C3—C5122.5 (3)C7—C8—C5111.7 (2)
C3i—C3—S1124.7 (2)C4—C8—C5127.3 (2)
C5—C3—S1112.84 (17)C4—C9—C6120.3 (2)
C9—C4—C8117.3 (2)C4—C9—H9119.8
C9—C4—C10120.7 (2)C6—C9—H9119.8
C8—C4—C10122.0 (2)C4—C10—H10A109.5
O2—C5—C8128.4 (2)C4—C10—H10B109.5
O2—C5—C3121.8 (2)H10A—C10—H10B109.5
C8—C5—C3109.9 (2)C4—C10—H10C109.5
C1—C6—C9123.2 (2)H10A—C10—H10C109.5
C1—C6—Cl4118.29 (19)H10B—C10—H10C109.5
C9—C6—Cl4118.56 (18)
Symmetry code: (i) x+2, y+2, z+2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds