Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Virus-like particles (VLPs) have many potentially useful applications. The core proteins of human hepatitis B virus self-assemble into icosahedral VLPs. As previously reported, core protein dimers (CPDs), produced by connecting two core proteins via a peptide linker, can also assemble into VLPs. CPDs in which heterologous proteins were connected to the C-terminus (CPD1) were found to rearrange into symmetrical octahedra during crystallization. In this study, a heterologous protein was inserted into the peptide linker of the CPD (CPD2). CPD2 was expressed in Escherichia coli, assembled into VLPs, purified and crystallized. A single crystal diffracted to 2.8 Å resolution and belonged to the cubic space group F432, with unit-cell parameters a = b = c = 218.6 Å. Single-crystal analysis showed that CPD1 and CPD2 rearranged into the same octahedral organization in a crystallization solution.

Subscribe to Acta Crystallographica Section F: Structural Biology Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds