metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-adipato-κ4O1:O6-bis­­{aqua­[5,6-di­phenyl-3-(pyridin-2-yl)-1,2,4-triazine-κ2N2,N3]copper(II)}

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 16 May 2012; accepted 5 June 2012; online 13 June 2012)

In the centrosymmetric binuclear title complex, [Cu2(C6H8O4)2(C20H14N4)2(H2O)2] or [Cu2(PDPT)2(C6H8O4)2(H2O)2] (PDPT = 3-(2-pyrid­yl)-5,6-diphenyl-1,2,4-triazine, the Cu atom displays a distorted square-pyramidal coordination environment with the basal plane occupied by two PDPT N atoms and two O atoms from different adipate dianions while a water mol­ecule is located at the apical position. Of the two water H atoms, one participates in an intra­molecular hydrogen bond whereas the second participates in an inter­molecular hydrogen bond, which leads to the formation of a chain along [010].

Related literature

For the biological activity and applications of triazines, see: Garcia et al. (1995[Garcia, G., Solano, I., Sanchez, G. & Lopez, G. (1995). Polyhedron, 14, 1855-1863.]); Mashaly et al. (1999[Mashaly, M., Bayoumi, H. A. & Taha, A. (1999). J. Serb. Chem. Soc. 64, 621-635.]); Croot & Hunter (2000[Croot, P. L. & Hunter, K. A. (2000). Anal. Chim. Acta, 406, 289-302.]); Soudi et al. (2005[Soudi, A. A., Marandi, F., Morsali, A., Kempe, R. & Hertle, I. (2005). J. Coord. Chem. 58, 1631-1637.]); Kawamichi et al. (2009[Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. (2009). Nature (London), 461, 633-635.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C6H8O4)2(C20H14N4)2(H2O)2]

  • Mr = 1072.08

  • Triclinic, [P \overline 1]

  • a = 9.4825 (19) Å

  • b = 10.616 (2) Å

  • c = 13.080 (3) Å

  • α = 78.96 (3)°

  • β = 68.76 (3)°

  • γ = 76.85 (3)°

  • V = 1186.4 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 295 K

  • 0.30 × 0.19 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.756, Tmax = 0.863

  • 11646 measured reflections

  • 5295 independent reflections

  • 3207 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.135

  • S = 1.02

  • 5295 reflections

  • 333 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.83 1.92 2.721 (3) 161
O5—H5B⋯O1ii 0.83 2.06 2.878 (4) 167
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Research on coordination chemistry of triazine–derived ligands has progressed very rapidly during the past two decades (Kawamichi et al., 2009). The 1,2,4–triazine compounds are well–known in natural materials and show intersting biological, pharmacological and medicinal properties (Garcia et al., 1995). The 3–(2–pyridyl)–5,6–diphenyl–1,2,4–triazine (PDPT) represents a principal class of N–donor heterocyclic ligands that exhibit interesting pharmacological properties such as blood platelet aggregation inhibition, significant activity towards leukemia and ovarian cancer, and anti–HIV activity (Mashaly et al., 1999; Soudi et al., 2005). It also has been widely used as an sensitive reagent for the determination of Fe(II) by spectrophotometric methods, in natural and waste water (Croot & Hunter, 2000). The title complex, was recently prepared and its crystal structure is reported here.

The title compound crystal structure is composed of centrosymmetric binuclear [Cu2(H2O)2(PDPT)2(C6H8O4)2] complex molecule (Fig. 1). The dinuclear complex molecules are centered at the crystallographic 2e positions. Each Cu atom is coordinated by two N atoms of the chelating PDPT ligand and three O atoms of one H2O molecule and two bis–monodentate adipato ligands to form a slightly distorted square–pyramidal coordination with H2O molecule located at the apical position (d(Cu–N) = 2.028 (3)Å, 2.029 (3)Å, the basal d(Cu–O) = 1.921 (3)Å, 1.961 (3)Å, the axial d(Cu–O) = 2.375 (3)Å). Through the adipato ligands, the square–pyramidally coordinated Cu atoms are linked to form centrosymmetric dinuclear. As expected, the Cu atom is slightly shifted toward the apical water O atom by 0.026 (2)Å from the least–squares plane defined by the four equatorial coordinating atoms. The triazine ring adopts a slight twist conformation. The dihedral angle between the two phenyl rings is 61.9 (2)°.

As shown in the Fig. 2 and Table 1, within the crystal structure, the water molecule O5 forms a strong intramolecular hydrogen bond to the uncoordinated carboxyl O3i with O5···O3i = 2.721 (3)Å and angle O5—H5A···O3i = 161°. Moreover, it forms an intermolecular hydrogen bond to the coordinated carboxyl O1ii atoms with O5···O1ii = 2.878 (4)Å and angle O5—H5B···O1ii = 167° to connect the dinuclear complexes along the [0 1 0] direction. Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1.

Related literature top

For the biological activity and applications of triazines, see: Garcia et al. (1995); Mashaly et al. (1999); Croot & Hunter (2000); Soudi et al. (2005); Kawamichi et al. (2009).

Experimental top

Addition of 2.0 mL (1.0 M) NaOH to a stirred aqueous of 0.172 g (1.0 mmol) CuCl2.2H2O in 5.0 mL H2O yield a blue precipitate, which was then separated by centrifugation, followed by washing with double–distilled water until no detectable Cl- anions in supernatant. The precipitate was added to a stirred ethanolic aqueous solution of 0.146 g (1.0 mmol) adipic acid in 20 mL EtOH/H2O (v:v = 1: 1). To the resulting suspension was added 0.310 g (1.0 mmol) 3–(2–pyridyl)–5,6–diphenyl–1,2,4–triazine (PDPT). The mixture was further stirred for approximately 15 min and the insoluble solid was filtered off. The filtrate (pH = 6.5) was allowed to stand at room temperature. Slow evaporation for two weeks afforded a small amount of brown crystals (yield 58% based on the initial CuCl2.2H2O input).

Refinement top

All H atoms bound to C were position geometrically and refined as riding, with C—H = 0.93Å and 0.97Å with Uiso(H) = 1.2Ueq(C). The H atoms attached to O were located in difference Fourier maps and refined freely with Uiso(H) = 1.5Ueq(O).

Structure description top

Research on coordination chemistry of triazine–derived ligands has progressed very rapidly during the past two decades (Kawamichi et al., 2009). The 1,2,4–triazine compounds are well–known in natural materials and show intersting biological, pharmacological and medicinal properties (Garcia et al., 1995). The 3–(2–pyridyl)–5,6–diphenyl–1,2,4–triazine (PDPT) represents a principal class of N–donor heterocyclic ligands that exhibit interesting pharmacological properties such as blood platelet aggregation inhibition, significant activity towards leukemia and ovarian cancer, and anti–HIV activity (Mashaly et al., 1999; Soudi et al., 2005). It also has been widely used as an sensitive reagent for the determination of Fe(II) by spectrophotometric methods, in natural and waste water (Croot & Hunter, 2000). The title complex, was recently prepared and its crystal structure is reported here.

The title compound crystal structure is composed of centrosymmetric binuclear [Cu2(H2O)2(PDPT)2(C6H8O4)2] complex molecule (Fig. 1). The dinuclear complex molecules are centered at the crystallographic 2e positions. Each Cu atom is coordinated by two N atoms of the chelating PDPT ligand and three O atoms of one H2O molecule and two bis–monodentate adipato ligands to form a slightly distorted square–pyramidal coordination with H2O molecule located at the apical position (d(Cu–N) = 2.028 (3)Å, 2.029 (3)Å, the basal d(Cu–O) = 1.921 (3)Å, 1.961 (3)Å, the axial d(Cu–O) = 2.375 (3)Å). Through the adipato ligands, the square–pyramidally coordinated Cu atoms are linked to form centrosymmetric dinuclear. As expected, the Cu atom is slightly shifted toward the apical water O atom by 0.026 (2)Å from the least–squares plane defined by the four equatorial coordinating atoms. The triazine ring adopts a slight twist conformation. The dihedral angle between the two phenyl rings is 61.9 (2)°.

As shown in the Fig. 2 and Table 1, within the crystal structure, the water molecule O5 forms a strong intramolecular hydrogen bond to the uncoordinated carboxyl O3i with O5···O3i = 2.721 (3)Å and angle O5—H5A···O3i = 161°. Moreover, it forms an intermolecular hydrogen bond to the coordinated carboxyl O1ii atoms with O5···O1ii = 2.878 (4)Å and angle O5—H5B···O1ii = 167° to connect the dinuclear complexes along the [0 1 0] direction. Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1.

For the biological activity and applications of triazines, see: Garcia et al. (1995); Mashaly et al. (1999); Croot & Hunter (2000); Soudi et al. (2005); Kawamichi et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The binuclear structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 40% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x, -y, -z+1.Di-µ-adipato-κ4O1:O5-bis{aqua[5,6-diphenyl- 3-(pyridin-2-yl)-1,2,4-triazine-κ2N2,N3]copper(II)}
[Figure 2] Fig. 2. One dimensional chain through hydrogen bond along [0 1 0]. The C—H bonds omitted for clarity.
Di-µ-adipato-κ4O1:O6-bis{aqua[5,6-diphenyl-3-(pyridin-2- yl)-1,2,4-triazine-κ2N2,N3]copper(II)} top
Crystal data top
[Cu2(C6H8O4)2(C20H14N4)2(H2O)2]Z = 1
Mr = 1072.08F(000) = 554
Triclinic, P1Dx = 1.501 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4825 (19) ÅCell parameters from 8025 reflections
b = 10.616 (2) Åθ = 3.3–27.5°
c = 13.080 (3) ŵ = 0.97 mm1
α = 78.96 (3)°T = 295 K
β = 68.76 (3)°Plate, brown
γ = 76.85 (3)°0.30 × 0.19 × 0.11 mm
V = 1186.4 (5) Å3
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
5295 independent reflections
Radiation source: fine-focus sealed tube3207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω–scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.756, Tmax = 0.863k = 1313
11646 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.8435P]
where P = (Fo2 + 2Fc2)/3
5295 reflections(Δ/σ)max < 0.001
333 parametersΔρmax = 0.61 e Å3
3 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu2(C6H8O4)2(C20H14N4)2(H2O)2]γ = 76.85 (3)°
Mr = 1072.08V = 1186.4 (5) Å3
Triclinic, P1Z = 1
a = 9.4825 (19) ÅMo Kα radiation
b = 10.616 (2) ŵ = 0.97 mm1
c = 13.080 (3) ÅT = 295 K
α = 78.96 (3)°0.30 × 0.19 × 0.11 mm
β = 68.76 (3)°
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
5295 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3207 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.863Rint = 0.061
11646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0573 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.61 e Å3
5295 reflectionsΔρmin = 0.51 e Å3
333 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24237 (6)0.28612 (5)0.46540 (4)0.03879 (17)
N10.4452 (4)0.2512 (3)0.4938 (3)0.0374 (8)
N20.3453 (3)0.4301 (3)0.3587 (3)0.0333 (7)
N30.5595 (3)0.5336 (3)0.3071 (3)0.0343 (7)
N40.3041 (3)0.4987 (3)0.2743 (3)0.0355 (7)
O10.0833 (3)0.3122 (3)0.3970 (2)0.0390 (6)
O20.2814 (3)0.1907 (3)0.2883 (3)0.0488 (7)
O30.0418 (3)0.2164 (3)0.3245 (3)0.0570 (8)
O40.1845 (3)0.1321 (3)0.4379 (3)0.0488 (8)
O50.0969 (3)0.4299 (3)0.5999 (3)0.0495 (8)
H5A0.042 (4)0.375 (3)0.634 (4)0.074*
H5B0.040 (4)0.501 (2)0.593 (4)0.074*
C10.4946 (5)0.1514 (4)0.5589 (3)0.0436 (10)
H1A0.43250.08920.59550.052*
C20.6347 (5)0.1373 (4)0.5739 (3)0.0460 (11)
H2A0.66840.06470.61700.055*
C30.7228 (5)0.2320 (4)0.5244 (4)0.0471 (11)
H3A0.81520.22620.53620.057*
C40.6740 (4)0.3366 (4)0.4566 (3)0.0404 (9)
H4A0.73220.40200.42210.048*
C50.5364 (4)0.3401 (4)0.4422 (3)0.0333 (8)
C60.7323 (4)0.7259 (4)0.1838 (4)0.0414 (10)
H6A0.78760.64830.20680.050*
C70.7968 (5)0.8365 (4)0.1501 (4)0.0495 (11)
H7A0.89640.83300.14860.059*
C80.7152 (5)0.9530 (4)0.1183 (4)0.0520 (12)
H8A0.75911.02790.09590.062*
C90.5676 (5)0.9572 (4)0.1200 (4)0.0497 (11)
H9A0.51171.03580.09960.060*
C100.5033 (5)0.8481 (4)0.1509 (4)0.0419 (10)
H10A0.40460.85250.15020.050*
C110.5839 (4)0.7290 (3)0.1840 (3)0.0331 (8)
C120.2046 (4)0.6241 (4)0.1017 (4)0.0423 (10)
H12A0.12870.60230.16760.051*
C130.1724 (5)0.6510 (4)0.0040 (4)0.0492 (11)
H13A0.07610.64450.00430.059*
C140.2816 (5)0.6872 (4)0.0934 (4)0.0510 (11)
H14A0.25870.70710.15860.061*
C150.4258 (5)0.6942 (4)0.0942 (3)0.0444 (10)
H15A0.49990.71910.16010.053*
C160.4600 (5)0.6642 (4)0.0026 (3)0.0379 (9)
H16A0.55790.66750.00110.045*
C170.3498 (4)0.6293 (3)0.1022 (3)0.0323 (8)
C180.4794 (4)0.4412 (3)0.3645 (3)0.0308 (8)
C190.5105 (4)0.6140 (3)0.2307 (3)0.0320 (8)
C200.3880 (4)0.5838 (3)0.2046 (3)0.0322 (8)
C210.1506 (4)0.2554 (4)0.3093 (3)0.0363 (9)
C220.0629 (5)0.2733 (4)0.2294 (4)0.0424 (10)
H22A0.04560.27830.27170.051*
H22B0.07620.35590.18340.051*
C230.1097 (5)0.1676 (4)0.1553 (3)0.0441 (10)
H23A0.21480.16940.10710.053*
H23B0.04560.18780.10900.053*
C240.0991 (5)0.0304 (4)0.2136 (4)0.0525 (11)
H24A0.11600.02660.15900.063*
H24B0.18180.00180.24430.063*
C250.0463 (5)0.0133 (4)0.3027 (4)0.0595 (13)
H25A0.12920.04450.27240.071*
H25B0.06160.06850.35830.071*
C260.0602 (5)0.1238 (4)0.3594 (3)0.0393 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0376 (3)0.0390 (3)0.0392 (3)0.0141 (2)0.0134 (2)0.0069 (2)
N10.0387 (18)0.0370 (18)0.034 (2)0.0073 (14)0.0125 (15)0.0035 (15)
N20.0339 (16)0.0338 (17)0.0325 (19)0.0103 (13)0.0124 (14)0.0033 (14)
N30.0330 (17)0.0318 (17)0.036 (2)0.0066 (13)0.0103 (14)0.0015 (14)
N40.0364 (17)0.0380 (18)0.0308 (19)0.0067 (14)0.0130 (14)0.0026 (14)
O10.0372 (14)0.0379 (15)0.0414 (18)0.0135 (12)0.0097 (13)0.0023 (13)
O20.0369 (16)0.0528 (18)0.058 (2)0.0044 (14)0.0162 (14)0.0125 (15)
O30.0568 (19)0.0408 (17)0.061 (2)0.0117 (15)0.0073 (16)0.0011 (16)
O40.0459 (17)0.0403 (16)0.050 (2)0.0119 (13)0.0076 (15)0.0081 (14)
O50.0481 (18)0.0387 (16)0.056 (2)0.0060 (13)0.0129 (16)0.0035 (15)
C10.045 (2)0.041 (2)0.037 (3)0.0053 (18)0.0106 (19)0.0029 (19)
C20.045 (2)0.050 (3)0.035 (3)0.007 (2)0.016 (2)0.001 (2)
C30.034 (2)0.062 (3)0.044 (3)0.000 (2)0.015 (2)0.010 (2)
C40.038 (2)0.041 (2)0.043 (3)0.0060 (18)0.0153 (19)0.0050 (19)
C50.035 (2)0.034 (2)0.029 (2)0.0043 (16)0.0095 (17)0.0043 (16)
C60.037 (2)0.036 (2)0.048 (3)0.0079 (17)0.0110 (19)0.0018 (19)
C70.045 (2)0.046 (2)0.060 (3)0.020 (2)0.012 (2)0.007 (2)
C80.069 (3)0.037 (2)0.055 (3)0.027 (2)0.018 (2)0.001 (2)
C90.068 (3)0.030 (2)0.054 (3)0.009 (2)0.026 (2)0.001 (2)
C100.046 (2)0.033 (2)0.050 (3)0.0080 (17)0.019 (2)0.0043 (19)
C110.037 (2)0.0273 (18)0.035 (2)0.0111 (15)0.0100 (17)0.0014 (16)
C120.035 (2)0.050 (2)0.037 (2)0.0076 (18)0.0116 (18)0.0057 (19)
C130.042 (2)0.058 (3)0.047 (3)0.004 (2)0.021 (2)0.001 (2)
C140.064 (3)0.046 (3)0.039 (3)0.002 (2)0.023 (2)0.000 (2)
C150.057 (3)0.036 (2)0.029 (2)0.0072 (19)0.002 (2)0.0014 (18)
C160.040 (2)0.033 (2)0.037 (2)0.0084 (16)0.0085 (18)0.0025 (17)
C170.041 (2)0.0256 (18)0.031 (2)0.0087 (15)0.0126 (17)0.0012 (16)
C180.0319 (19)0.0302 (19)0.029 (2)0.0081 (15)0.0077 (16)0.0034 (16)
C190.0287 (18)0.0308 (19)0.032 (2)0.0051 (15)0.0064 (16)0.0005 (16)
C200.0288 (18)0.0264 (18)0.037 (2)0.0041 (15)0.0071 (16)0.0027 (16)
C210.036 (2)0.031 (2)0.042 (3)0.0163 (17)0.0109 (18)0.0036 (18)
C220.046 (2)0.038 (2)0.043 (3)0.0154 (18)0.017 (2)0.0094 (19)
C230.049 (2)0.052 (3)0.034 (2)0.021 (2)0.016 (2)0.008 (2)
C240.064 (3)0.048 (3)0.041 (3)0.020 (2)0.006 (2)0.007 (2)
C250.059 (3)0.046 (3)0.062 (4)0.013 (2)0.007 (3)0.002 (2)
C260.046 (2)0.034 (2)0.038 (3)0.0121 (18)0.014 (2)0.0003 (18)
Geometric parameters (Å, º) top
Cu1—O11.961 (3)C8—C91.382 (6)
Cu1—O4i1.921 (3)C8—H8A0.9300
Cu1—O52.375 (3)C9—C101.356 (6)
Cu1—N12.029 (3)C9—H9A0.9300
Cu1—N22.028 (3)C10—C111.401 (5)
N1—C11.336 (5)C10—H10A0.9300
N1—C51.341 (5)C11—C191.463 (5)
N2—C181.333 (4)C12—C131.382 (6)
N2—N41.334 (4)C12—C171.394 (5)
N3—C181.321 (5)C12—H12A0.9300
N3—C191.332 (4)C13—C141.371 (6)
N4—C201.329 (5)C13—H13A0.9300
O1—C211.283 (5)C14—C151.382 (6)
O2—C211.235 (4)C14—H14A0.9300
O3—C261.236 (5)C15—C161.380 (6)
O4—C261.260 (5)C15—H15A0.9300
O4—Cu1i1.921 (3)C16—C171.390 (5)
O5—H5A0.829 (18)C16—H16A0.9300
O5—H5B0.830 (18)C17—C201.477 (5)
C1—C21.383 (5)C19—C201.438 (5)
C1—H1A0.9300C21—C221.516 (5)
C2—C31.367 (6)C22—C231.508 (6)
C2—H2A0.9300C22—H22A0.9700
C3—C41.385 (6)C22—H22B0.9700
C3—H3A0.9300C23—C241.516 (6)
C4—C51.376 (5)C23—H23A0.9700
C4—H4A0.9300C23—H23B0.9700
C5—C181.481 (5)C24—C251.470 (6)
C6—C71.372 (6)C24—H24A0.9700
C6—C111.399 (5)C24—H24B0.9700
C6—H6A0.9300C25—C261.513 (6)
C7—C81.378 (6)C25—H25A0.9700
C7—H7A0.9300C25—H25B0.9700
O1—Cu1—O594.47 (11)C13—C12—H12A119.7
O1—Cu1—N1164.40 (13)C17—C12—H12A119.7
O1—Cu1—N292.22 (11)C14—C13—C12120.4 (4)
O4i—Cu1—O196.02 (12)C14—C13—H13A119.8
O4i—Cu1—O594.45 (12)C12—C13—H13A119.8
O4i—Cu1—N190.71 (12)C13—C14—C15119.8 (4)
O4i—Cu1—N2168.98 (12)C13—C14—H14A120.1
N1—Cu1—O599.04 (12)C15—C14—H14A120.1
N2—Cu1—O592.19 (12)C16—C15—C14120.1 (4)
N2—Cu1—N179.55 (12)C16—C15—H15A120.0
C1—N1—C5117.8 (3)C14—C15—H15A120.0
C1—N1—Cu1126.9 (3)C15—C16—C17120.8 (4)
C5—N1—Cu1115.3 (2)C15—C16—H16A119.6
C18—N2—N4117.7 (3)C17—C16—H16A119.6
C18—N2—Cu1115.4 (2)C16—C17—C12118.3 (3)
N4—N2—Cu1126.0 (2)C16—C17—C20121.7 (3)
C18—N3—C19117.8 (3)C12—C17—C20119.6 (3)
C20—N4—N2120.5 (3)N3—C18—N2124.6 (3)
C21—O1—Cu1104.0 (2)N3—C18—C5120.5 (3)
C26—O4—Cu1i126.9 (3)N2—C18—C5114.9 (3)
Cu1—O5—H5A90 (4)N3—C19—C20118.0 (3)
Cu1—O5—H5B129 (4)N3—C19—C11115.9 (3)
H5A—O5—H5B108 (3)C20—C19—C11126.0 (3)
N1—C1—C2122.4 (4)N4—C20—C19118.7 (3)
N1—C1—H1A118.8N4—C20—C17114.1 (3)
C2—C1—H1A118.8C19—C20—C17127.0 (3)
C3—C2—C1118.8 (4)O2—C21—O1122.7 (4)
C3—C2—H2A120.6O2—C21—C22120.5 (4)
C1—C2—H2A120.6O1—C21—C22116.8 (3)
C2—C3—C4119.8 (4)C23—C22—C21115.3 (3)
C2—C3—H3A120.1C23—C22—H22A108.5
C4—C3—H3A120.1C21—C22—H22A108.5
C5—C4—C3117.6 (4)C23—C22—H22B108.5
C5—C4—H4A121.2C21—C22—H22B108.5
C3—C4—H4A121.2H22A—C22—H22B107.5
N1—C5—C4123.4 (3)C22—C23—C24115.8 (4)
N1—C5—C18114.3 (3)C22—C23—H23A108.3
C4—C5—C18122.2 (4)C24—C23—H23A108.3
C7—C6—C11120.4 (4)C22—C23—H23B108.3
C7—C6—H6A119.8C24—C23—H23B108.3
C11—C6—H6A119.8H23A—C23—H23B107.4
C6—C7—C8120.6 (4)C25—C24—C23116.0 (4)
C6—C7—H7A119.7C25—C24—H24A108.3
C8—C7—H7A119.7C23—C24—H24A108.3
C7—C8—C9119.3 (4)C25—C24—H24B108.3
C7—C8—H8A120.3C23—C24—H24B108.3
C9—C8—H8A120.3H24A—C24—H24B107.4
C10—C9—C8120.9 (4)C24—C25—C26116.6 (4)
C10—C9—H9A119.6C24—C25—H25A108.2
C8—C9—H9A119.6C26—C25—H25A108.2
C9—C10—C11120.7 (4)C24—C25—H25B108.2
C9—C10—H10A119.6C26—C25—H25B108.2
C11—C10—H10A119.6H25A—C25—H25B107.3
C6—C11—C10118.1 (3)O3—C26—O4125.7 (4)
C6—C11—C19119.8 (3)O3—C26—C25120.3 (4)
C10—C11—C19121.6 (3)O4—C26—C25113.9 (4)
C13—C12—C17120.5 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.831.922.721 (3)161
O5—H5B···O1ii0.832.062.878 (4)167
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C6H8O4)2(C20H14N4)2(H2O)2]
Mr1072.08
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.4825 (19), 10.616 (2), 13.080 (3)
α, β, γ (°)78.96 (3), 68.76 (3), 76.85 (3)
V3)1186.4 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.30 × 0.19 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID CCD
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.756, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
11646, 5295, 3207
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.135, 1.02
No. of reflections5295
No. of parameters333
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.51

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.831.922.721 (3)161
O5—H5B···O1ii0.832.062.878 (4)167
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University.

References

First citationCroot, P. L. & Hunter, K. A. (2000). Anal. Chim. Acta, 406, 289–302.  Web of Science CrossRef CAS Google Scholar
First citationGarcia, G., Solano, I., Sanchez, G. & Lopez, G. (1995). Polyhedron, 14, 1855–1863.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKawamichi, T., Haneda, T., Kawano, M. & Fujita, M. (2009). Nature (London), 461, 633–635.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMashaly, M., Bayoumi, H. A. & Taha, A. (1999). J. Serb. Chem. Soc. 64, 621–635.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoudi, A. A., Marandi, F., Morsali, A., Kempe, R. & Hertle, I. (2005). J. Coord. Chem. 58, 1631–1637.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds