organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Phenyl­iminio)amino]-2-naphtho­late

aHubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
*Correspondence e-mail: cmjin@email.hbnu.edu.cn

(Received 10 June 2010; accepted 16 June 2010; online 23 June 2010)

In the zwitterionic title compound, C16H12N2O, the dihedral angle between the benzene ring and naphthalene ring system is 2.0 (1)°. The azo group adopts a trans configuration and an intra­molecular N—H⋯O hydrogen bond is found. In the crystal, the mol­ecules are packed by strong ππ inter­actions [centroid–centroid distance between aromatic rings = 3.375 (3) Å].

Related literature

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]); Oueslati et al. (2004[Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575-1578.]). Many azo compounds have been synthesized by diazo­tization and diazo coupling reactions, see: Wang et al. (2003[Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm. 57, 77-86.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O

  • Mr = 248.28

  • Monoclinic, C 2/c

  • a = 27.8713 (4) Å

  • b = 6.0248 (1) Å

  • c = 14.9199 (2) Å

  • β = 103.570 (2)°

  • V = 2435.40 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.13 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.993

  • 8859 measured reflections

  • 3002 independent reflections

  • 2536 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.169

  • S = 1.08

  • 3002 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.895 (19) 1.803 (18) 2.5545 (17) 140.0 (16)

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Azo-compounds are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004; Oueslati et al., 2004). Azo-dyes are synthetic pigments that contain an azo-group, as part of the structure. Azo-groups do not occur naturally. Many azo-compounds have been synthesized by the diazotization and diazo coupling reaction (Wang et al., 2003). The title compound, I, was obtained through the diazotization of aniline followed by a coupling reaction with 2-naphthol.

The molecular structure of I is illustrated in Fig. 1. The molecule adopts an anti–configuration with the two aryl groups reside on the opposite side of azo–group. The dihedral angle between the benzene ring and naphthalene ring is 2.0 (1)°. An intramolecular N—H···O hydrogen bond is found (Table 1). It is more interesting, that hydrogen atom in the OH-group has transfer to N atom in the azo-group to form the structure of dipolar ion. Moreover, different Fourier map indicate hydrogen site location is closer to nitrogen atom of azo-group. In the crystal molecules are packed by the weak ππ interactions with the closest approach between centroids of aromatic rings is 3.375 (3)Å.

Related literature top

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al., (2004); Oueslati et al., (2004). Many azo compounds have been synthesized by diazotization and diazo coupling reactions, see: Wang et al., (2003).

Experimental top

The title compound was prepared by a similar method of other aromatic azo–compounds (Wang et al., 2003). Single crystals of I were obtained by slow evaporation from a petroleum ether ethyl acetate (2/1 v/v) solution system.

Refinement top

The H atoms based on C atoms were positioned geometrically at the distance of 0.95Å, and refined in a riding model with Uiso(H) = 1.2Ueq(C). The H atom of amino-group was refined freely.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of title compound showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
1-[(Phenyliminio)amino]-2-naphtholate top
Crystal data top
C16H12N2OF(000) = 1040
Mr = 248.28Dx = 1.354 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2783 reflections
a = 27.8713 (4) Åθ = 2.8–28.2°
b = 6.0248 (1) ŵ = 0.09 mm1
c = 14.9199 (2) ÅT = 200 K
β = 103.570 (2)°Block, red
V = 2435.40 (7) Å30.13 × 0.10 × 0.08 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3002 independent reflections
Radiation source: fine–focus sealed tube2536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ϕ and ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3536
Tmin = 0.989, Tmax = 0.993k = 88
8859 measured reflectionsl = 1519
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0799P)2 + 1.0846P]
where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H12N2OV = 2435.40 (7) Å3
Mr = 248.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.8713 (4) ŵ = 0.09 mm1
b = 6.0248 (1) ÅT = 200 K
c = 14.9199 (2) Å0.13 × 0.10 × 0.08 mm
β = 103.570 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3002 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2536 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.993Rint = 0.088
8859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.48 e Å3
3002 reflectionsΔρmin = 0.23 e Å3
175 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14696 (5)0.0629 (2)0.09018 (10)0.0244 (3)
C20.19947 (5)0.0124 (3)0.11604 (10)0.0287 (3)
C30.21439 (6)0.1846 (3)0.17062 (11)0.0330 (4)
H30.24850.21970.19010.040*
C40.18102 (6)0.3195 (3)0.19449 (11)0.0319 (4)
H40.19240.44840.22980.038*
C50.12895 (5)0.2771 (2)0.16900 (10)0.0256 (3)
C60.09522 (6)0.4260 (3)0.19251 (11)0.0314 (4)
H60.10700.55750.22560.038*
C70.04557 (6)0.3840 (3)0.16840 (11)0.0337 (4)
H70.02300.48700.18390.040*
C80.02823 (6)0.1896 (3)0.12098 (11)0.0324 (4)
H80.00620.15940.10520.039*
C90.06067 (5)0.0409 (2)0.09676 (10)0.0282 (3)
H90.04840.09120.06480.034*
C100.11155 (5)0.0826 (2)0.11877 (9)0.0237 (3)
C110.13828 (6)0.5505 (2)0.04777 (9)0.0255 (3)
C120.17170 (6)0.6926 (3)0.07488 (11)0.0311 (4)
H120.20610.66230.05760.037*
C130.15433 (7)0.8788 (3)0.12732 (11)0.0355 (4)
H130.17690.97650.14600.043*
C140.10432 (6)0.9226 (3)0.15249 (11)0.0340 (4)
H140.09251.05070.18790.041*
C150.07150 (6)0.7790 (3)0.12588 (11)0.0329 (4)
H150.03710.80880.14380.039*
C160.08806 (6)0.5922 (2)0.07338 (11)0.0292 (3)
H160.06530.49440.05530.035*
N10.12797 (5)0.23592 (19)0.03768 (8)0.0253 (3)
N20.15775 (5)0.3675 (2)0.00730 (9)0.0268 (3)
H2A0.1899 (7)0.333 (3)0.0227 (13)0.032*
O10.23107 (4)0.1341 (2)0.09144 (9)0.0387 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (7)0.0253 (7)0.0190 (7)0.0024 (5)0.0050 (5)0.0008 (5)
C20.0281 (7)0.0323 (8)0.0243 (7)0.0009 (6)0.0030 (6)0.0012 (6)
C30.0263 (7)0.0406 (9)0.0288 (8)0.0067 (6)0.0003 (6)0.0043 (7)
C40.0357 (8)0.0321 (8)0.0255 (8)0.0084 (6)0.0020 (6)0.0068 (6)
C50.0327 (8)0.0274 (7)0.0166 (7)0.0027 (6)0.0058 (6)0.0008 (5)
C60.0416 (9)0.0292 (7)0.0250 (8)0.0036 (6)0.0110 (6)0.0037 (6)
C70.0381 (9)0.0335 (8)0.0329 (9)0.0032 (6)0.0151 (7)0.0020 (6)
C80.0292 (8)0.0388 (9)0.0306 (8)0.0029 (6)0.0097 (6)0.0001 (6)
C90.0300 (7)0.0307 (7)0.0241 (7)0.0059 (6)0.0069 (6)0.0034 (6)
C100.0292 (7)0.0258 (7)0.0163 (6)0.0032 (5)0.0059 (5)0.0013 (5)
C110.0351 (8)0.0239 (7)0.0184 (7)0.0026 (6)0.0080 (6)0.0009 (5)
C120.0343 (8)0.0324 (8)0.0284 (8)0.0010 (6)0.0113 (6)0.0007 (6)
C130.0489 (10)0.0314 (8)0.0304 (8)0.0022 (7)0.0180 (7)0.0031 (6)
C140.0521 (10)0.0271 (7)0.0232 (8)0.0076 (7)0.0100 (7)0.0030 (6)
C150.0387 (8)0.0315 (8)0.0274 (8)0.0071 (6)0.0057 (7)0.0008 (6)
C160.0340 (8)0.0273 (7)0.0276 (8)0.0001 (6)0.0101 (6)0.0001 (6)
N10.0317 (7)0.0257 (6)0.0192 (6)0.0011 (5)0.0073 (5)0.0017 (4)
N20.0284 (6)0.0271 (6)0.0253 (7)0.0019 (5)0.0071 (5)0.0023 (5)
O10.0284 (6)0.0426 (7)0.0437 (7)0.0017 (5)0.0058 (5)0.0084 (5)
Geometric parameters (Å, º) top
C1—N11.3364 (18)C9—C101.401 (2)
C1—C21.455 (2)C9—H90.9500
C1—C101.457 (2)C11—C161.385 (2)
C2—O11.2650 (18)C11—C121.393 (2)
C2—C31.444 (2)C11—N21.4058 (18)
C3—C41.344 (2)C12—C131.389 (2)
C3—H30.9500C12—H120.9500
C4—C51.434 (2)C13—C141.381 (2)
C4—H40.9500C13—H130.9500
C5—C61.402 (2)C14—C151.383 (2)
C5—C101.4141 (19)C14—H140.9500
C6—C71.369 (2)C15—C161.387 (2)
C6—H60.9500C15—H150.9500
C7—C81.395 (2)C16—H160.9500
C7—H70.9500N1—N21.3033 (17)
C8—C91.380 (2)N2—H2A0.895 (19)
C8—H80.9500
N1—C1—C2123.63 (13)C10—C9—H9119.6
N1—C1—C10116.02 (13)C9—C10—C5118.37 (13)
C2—C1—C10120.32 (13)C9—C10—C1122.79 (13)
O1—C2—C3120.81 (14)C5—C10—C1118.82 (13)
O1—C2—C1121.82 (13)C16—C11—C12120.65 (13)
C3—C2—C1117.37 (13)C16—C11—N2122.01 (13)
C4—C3—C2121.37 (14)C12—C11—N2117.33 (14)
C4—C3—H3119.3C13—C12—C11119.46 (15)
C2—C3—H3119.3C13—C12—H12120.3
C3—C4—C5122.82 (14)C11—C12—H12120.3
C3—C4—H4118.6C14—C13—C12120.23 (15)
C5—C4—H4118.6C14—C13—H13119.9
C6—C5—C10119.73 (14)C12—C13—H13119.9
C6—C5—C4121.06 (13)C13—C14—C15119.73 (14)
C10—C5—C4119.21 (13)C13—C14—H14120.1
C7—C6—C5120.78 (14)C15—C14—H14120.1
C7—C6—H6119.6C14—C15—C16120.98 (15)
C5—C6—H6119.6C14—C15—H15119.5
C6—C7—C8119.79 (14)C16—C15—H15119.5
C6—C7—H7120.1C11—C16—C15118.95 (14)
C8—C7—H7120.1C11—C16—H16120.5
C9—C8—C7120.52 (14)C15—C16—H16120.5
C9—C8—H8119.7N2—N1—C1118.77 (12)
C7—C8—H8119.7N1—N2—C11119.36 (13)
C8—C9—C10120.77 (14)N1—N2—H2A116.7 (11)
C8—C9—H9119.6C11—N2—H2A123.9 (11)
N1—C1—C2—O11.5 (2)C4—C5—C10—C13.3 (2)
C10—C1—C2—O1179.23 (13)N1—C1—C10—C92.8 (2)
N1—C1—C2—C3177.99 (13)C2—C1—C10—C9179.28 (13)
C10—C1—C2—C30.2 (2)N1—C1—C10—C5175.65 (12)
O1—C2—C3—C4177.66 (15)C2—C1—C10—C52.3 (2)
C1—C2—C3—C41.8 (2)C16—C11—C12—C130.6 (2)
C2—C3—C4—C50.8 (2)N2—C11—C12—C13178.35 (13)
C3—C4—C5—C6177.74 (15)C11—C12—C13—C140.1 (2)
C3—C4—C5—C101.8 (2)C12—C13—C14—C150.5 (2)
C10—C5—C6—C70.8 (2)C13—C14—C15—C160.6 (2)
C4—C5—C6—C7179.65 (15)C12—C11—C16—C150.6 (2)
C5—C6—C7—C80.9 (2)N2—C11—C16—C15178.39 (13)
C6—C7—C8—C91.1 (2)C14—C15—C16—C110.1 (2)
C7—C8—C9—C100.4 (2)C2—C1—N1—N20.2 (2)
C8—C9—C10—C52.0 (2)C10—C1—N1—N2177.61 (12)
C8—C9—C10—C1176.43 (13)C1—N1—N2—C11179.81 (12)
C6—C5—C10—C92.2 (2)C16—C11—N2—N12.1 (2)
C4—C5—C10—C9178.23 (13)C12—C11—N2—N1176.92 (12)
C6—C5—C10—C1176.27 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.895 (19)1.803 (18)2.5545 (17)140.0 (16)

Experimental details

Crystal data
Chemical formulaC16H12N2O
Mr248.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)27.8713 (4), 6.0248 (1), 14.9199 (2)
β (°) 103.570 (2)
V3)2435.40 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.13 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.989, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8859, 3002, 2536
Rint0.088
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.169, 1.08
No. of reflections3002
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.895 (19)1.803 (18)2.5545 (17)140.0 (16)
 

Acknowledgements

We gratefully acknowledge the financial support of the Natural Science Foundation of Hubei Province (2009CDB349, 2006ABB038), the Distinguished Young Scholars Programs, HBDE (Q200722003, Z201022001, CXY2009B028) and the Science and Technology Foundation for Creative Research Group of HBNU (2009).

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575–1578.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm. 57, 77–86.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds