organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Chloro-N-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methyl­ene]aniline

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China
*Correspondence e-mail: chemsailor@126.com

(Received 2 September 2009; accepted 3 September 2009; online 9 September 2009)

In the title compound, C17H13Cl2N3, the dihedral angle between the pyrazole ring system and 4-chloro­phenyl ring is 26.1 (2)°. The C=N bond linking the two aromatic rings has an E conformation.

Related literature

For the biological properties of pyrazoles, see: Pimerova & Voronina (2001[Pimerova, E. V. & Voronina, E. V. (2001). J. Pharm. Chem. 35, 18-21.]); Selvam et al. (2005[Selvam, C., Jachak, S. M., Thilagavathi, R. & Chakraborti, A. K. (2005). Bioorg. Med. Chem. Lett. 15, 1793-1797.]). For the biological activity of Schiff bases, see: Rajavel et al. (2008[Rajavel, R., Vadivu, M. S. & Anitha, C. (2008). Eur. J. Chem. 5, 620-626.]); Yu et al. (2007[Yu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991-996.]). For a related stucture, see: Sun et al. (2007[Sun, F.-M., Yang, L., Chen, X.-B. & Lian, Z.-X. (2007). Acta Cryst. E63, o4620.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13Cl2N3

  • Mr = 330.20

  • Orthorhombic, P c a 21

  • a = 13.6471 (6) Å

  • b = 15.6315 (3) Å

  • c = 7.3514 (6) Å

  • V = 1568.24 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.39 × 0.34 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.839, Tmax = 0.960

  • 14704 measured reflections

  • 3558 independent reflections

  • 2533 reflections with F2 > 2σ(F2)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.099

  • S = 1.00

  • 3558 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1627 Friedel pairs

  • Flack parameter: −0.02 (6)

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Pyrazoles continue to attract a great deal of attention due to their extensive utilization in the pharmaceutical and agrochemical fields (Pimerova & Voronina, 2001; Selvam et al., 2005). Schiff base compounds have been used as fine chemicals and medical substrates and they are important ligands in coordination chemistry (Rajavel et al., 2008; Yu et al., 2007). As part of our studies on the synthesis and characterization of pyrazoles containing Schiff base group, we report here the molecular and crystal structure of the title compound (Fig. 1).

Bond lengths and angles of the title molecule agree with those observed in a related compound, such as (E)-N-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl) methylene]aniline (Sun et al., 2007). The dihedral angle between the pyrazole ring (N1/N2/C1–C3) and the substituted phenyl ring (C6–C11) is 26.1 (2)°. The C5N3 bond linking the two aromatic rings has an E–conformation. The angles between the conjugated linkage and the pyrazole ring (C1/C2/C3/N1/N2), and between the linkage and the substituted phenyl ring (C6–C11) are 6.3 (3)° and 38.5 (2)°, respectively.

Related literature top

For the biological properties of pyrazoles, see: Pimerova & Voronina (2001); Selvam et al. (2005). For the biological activity of Schiff bases, see: Rajavel et al. (2008); Yu et al. (2007). For a related stucture, see: Sun et al. (2007).

Experimental top

A solution of 5–chloro–3–methyl–1–phenyl–4–formyl–1H–pyrazole (5 mmol) and 4–chloroaniline (5 mmol) in ethanol (20 ml) was refluxed for 2 h. After cooling, filtration and drying, the title compound was obtained (yield: 84%, m.p. 434 K). The crystal used for data collection was obtained by slow evaporation from a saturated ethanol solution at room temperature.

Refinement top

The H atoms were positioned geometrically with C—H = 0.93Å for aromatic H and C—H = 0.96Å for methyl H and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
(E)-4-Chloro-N-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene]aniline top
Crystal data top
C17H13Cl2N3Dx = 1.399 Mg m3
Mr = 330.20Melting point: 434 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2acCell parameters from 10504 reflections
a = 13.6471 (6) Åθ = 3.0–27.4°
b = 15.6315 (3) ŵ = 0.41 mm1
c = 7.3514 (6) ÅT = 296 K
V = 1568.24 (15) Å3Plate, colourless
Z = 40.39 × 0.34 × 0.10 mm
F(000) = 680.00
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2533 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.038
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.839, Tmax = 0.960k = 2020
14704 measured reflectionsl = 99
3558 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.055P)2 + 0.089P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.21 e Å3
3558 reflectionsΔρmin = 0.24 e Å3
201 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: DirectExtinction coefficient: 0.0049 (8)
Secondary atom site location: DifmapAbsolute structure: Flack (1983), 1627 Friedel pairs
Hydrogen site location: GeomAbsolute structure parameter: 0.02 (6)
Crystal data top
C17H13Cl2N3V = 1568.24 (15) Å3
Mr = 330.20Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 13.6471 (6) ŵ = 0.41 mm1
b = 15.6315 (3) ÅT = 296 K
c = 7.3514 (6) Å0.39 × 0.34 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3558 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2533 reflections with F2 > 2σ(F2)
Tmin = 0.839, Tmax = 0.960Rint = 0.038
14704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.21 e Å3
S = 1.00Δρmin = 0.24 e Å3
3558 reflectionsAbsolute structure: Flack (1983), 1627 Friedel pairs
201 parametersAbsolute structure parameter: 0.02 (6)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42986 (4)0.48323 (3)0.33646 (10)0.04844 (15)
Cl20.32167 (6)0.08853 (5)0.43233 (18)0.0893 (3)
N10.71398 (12)0.47004 (11)0.3343 (3)0.0478 (4)
N20.62562 (11)0.51191 (10)0.3340 (2)0.0391 (3)
N30.56891 (12)0.22175 (11)0.3631 (3)0.0480 (5)
C10.55095 (13)0.45498 (12)0.3464 (3)0.0395 (4)
C20.58944 (14)0.37384 (12)0.3577 (3)0.0411 (4)
C30.69251 (14)0.38699 (14)0.3490 (4)0.0452 (5)
C40.77319 (18)0.32253 (16)0.3538 (5)0.0629 (7)
C50.53181 (17)0.29634 (13)0.3730 (3)0.0446 (5)
C60.50557 (16)0.14994 (13)0.3773 (3)0.0436 (5)
C70.5429 (2)0.07657 (16)0.4568 (4)0.0565 (6)
C80.4858 (2)0.00375 (17)0.4763 (4)0.0624 (7)
C90.3916 (2)0.00400 (16)0.4118 (3)0.0539 (6)
C100.35333 (17)0.07546 (14)0.3280 (5)0.0548 (6)
C110.41003 (16)0.14831 (14)0.3120 (3)0.0490 (6)
C120.62388 (16)0.60273 (12)0.3108 (3)0.0393 (5)
C130.55665 (18)0.65294 (14)0.4025 (3)0.0467 (5)
C140.55583 (19)0.74051 (14)0.3718 (3)0.0539 (6)
C150.6222 (2)0.77754 (17)0.2553 (3)0.0558 (7)
C160.6905 (2)0.72688 (18)0.1672 (3)0.0550 (6)
C170.69122 (17)0.63883 (17)0.1930 (3)0.0467 (5)
H50.46460.30130.39090.054*
H70.60730.07610.49780.068*
H80.51110.04470.53260.075*
H100.28980.07460.28250.066*
H110.38400.19680.25690.059*
H130.51260.62840.48370.056*
H140.50980.77460.43070.065*
H150.62130.83630.23570.067*
H160.73630.75200.09010.066*
H170.73630.60470.13190.056*
H410.75780.27620.27310.076*
H420.78030.30100.47540.076*
H430.83330.34900.31600.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0317 (2)0.0431 (2)0.0705 (3)0.0001 (2)0.0023 (3)0.0004 (3)
Cl20.0752 (5)0.0612 (4)0.1317 (7)0.0261 (3)0.0065 (5)0.0141 (5)
N10.0334 (8)0.0459 (10)0.0642 (12)0.0012 (7)0.0001 (12)0.0000 (13)
N20.0288 (8)0.0372 (8)0.0513 (9)0.0004 (6)0.0006 (11)0.0029 (10)
N30.0417 (9)0.0363 (9)0.0659 (14)0.0003 (7)0.0003 (10)0.0005 (10)
C10.0321 (9)0.0388 (9)0.0476 (11)0.0005 (8)0.0036 (12)0.0007 (12)
C20.0373 (10)0.0387 (10)0.0473 (12)0.0003 (8)0.0025 (11)0.0031 (11)
C30.0367 (10)0.0467 (11)0.0522 (12)0.0019 (8)0.0021 (12)0.0010 (12)
C40.0469 (13)0.0501 (13)0.092 (2)0.0085 (11)0.0008 (16)0.0068 (17)
C50.0400 (11)0.0424 (10)0.0515 (15)0.0033 (9)0.0034 (10)0.0036 (11)
C60.0409 (11)0.0384 (10)0.0515 (14)0.0015 (8)0.0012 (10)0.0010 (10)
C70.0449 (13)0.0452 (13)0.0795 (18)0.0018 (10)0.0114 (14)0.0083 (13)
C80.0650 (19)0.0426 (13)0.0795 (18)0.0026 (11)0.0083 (15)0.0170 (13)
C90.0514 (14)0.0456 (12)0.0647 (15)0.0067 (11)0.0055 (13)0.0008 (12)
C100.0360 (10)0.0501 (12)0.0782 (16)0.0023 (10)0.0013 (15)0.0023 (14)
C110.0445 (13)0.0371 (11)0.0656 (16)0.0045 (8)0.0004 (13)0.0010 (12)
C120.0353 (11)0.0362 (10)0.0463 (13)0.0054 (8)0.0049 (10)0.0002 (10)
C130.0462 (13)0.0439 (11)0.0501 (13)0.0043 (10)0.0019 (11)0.0011 (10)
C140.0535 (14)0.0424 (11)0.0658 (18)0.0032 (10)0.0061 (13)0.0073 (13)
C150.0620 (18)0.0413 (13)0.0642 (15)0.0111 (12)0.0165 (14)0.0050 (12)
C160.0493 (14)0.0580 (16)0.0578 (14)0.0171 (12)0.0065 (12)0.0147 (13)
C170.0377 (12)0.0513 (13)0.0510 (13)0.0063 (10)0.0009 (10)0.0039 (11)
Geometric parameters (Å, º) top
Cl1—C11.7121 (19)C12—C171.383 (3)
Cl2—C91.740 (2)C13—C141.387 (3)
N1—N21.372 (2)C14—C151.375 (3)
N1—C31.335 (2)C15—C161.384 (3)
N2—C11.356 (2)C16—C171.389 (3)
N2—C121.430 (2)C4—H410.960
N3—C51.273 (2)C4—H420.960
N3—C61.421 (2)C4—H430.960
C1—C21.375 (2)C5—H50.930
C2—C31.423 (2)C7—H70.930
C2—C51.449 (3)C8—H80.930
C3—C41.493 (3)C10—H100.930
C6—C71.384 (3)C11—H110.930
C6—C111.390 (3)C13—H130.930
C7—C81.387 (3)C14—H140.930
C8—C91.370 (4)C15—H150.930
C9—C101.379 (3)C16—H160.930
C10—C111.382 (3)C17—H170.930
C12—C131.383 (3)
N2—N1—C3105.73 (16)C14—C15—C16119.6 (2)
N1—N2—C1110.32 (15)C15—C16—C17120.5 (2)
N1—N2—C12119.23 (15)C12—C17—C16119.0 (2)
C1—N2—C12130.32 (16)C3—C4—H41109.5
C5—N3—C6118.52 (18)C3—C4—H42109.5
Cl1—C1—N2123.59 (15)C3—C4—H43109.5
Cl1—C1—C2127.52 (15)H41—C4—H42109.5
N2—C1—C2108.80 (16)H41—C4—H43109.5
C1—C2—C3103.98 (18)H42—C4—H43109.5
C1—C2—C5124.65 (19)N3—C5—H5118.5
C3—C2—C5131.37 (19)C2—C5—H5118.5
N1—C3—C2111.16 (18)C6—C7—H7119.4
N1—C3—C4119.75 (19)C8—C7—H7119.4
C2—C3—C4129.1 (2)C7—C8—H8120.4
N3—C5—C2123.1 (2)C9—C8—H8120.4
N3—C6—C7117.5 (2)C9—C10—H10120.2
N3—C6—C11124.1 (2)C11—C10—H10120.2
C7—C6—C11118.4 (2)C6—C11—H11119.6
C6—C7—C8121.1 (2)C10—C11—H11119.6
C7—C8—C9119.3 (2)C12—C13—H13120.5
Cl2—C9—C8118.8 (2)C14—C13—H13120.5
Cl2—C9—C10120.3 (2)C13—C14—H14119.6
C8—C9—C10120.8 (2)C15—C14—H14119.6
C9—C10—C11119.6 (2)C14—C15—H15120.2
C6—C11—C10120.7 (2)C16—C15—H15120.2
N2—C12—C13121.07 (19)C15—C16—H16119.7
N2—C12—C17117.95 (19)C17—C16—H16119.7
C13—C12—C17121.0 (2)C12—C17—H17120.5
C12—C13—C14119.1 (2)C16—C17—H17120.5
C13—C14—C15120.8 (2)
N2—N1—C3—C20.2 (3)C3—C2—C5—N37.3 (4)
N2—N1—C3—C4179.9 (2)C5—C2—C3—N1179.7 (2)
C3—N1—N2—C10.7 (3)C5—C2—C3—C40.2 (4)
C3—N1—N2—C12177.0 (2)N3—C6—C7—C8179.8 (2)
N1—N2—C1—Cl1176.0 (2)N3—C6—C11—C10178.9 (2)
N1—N2—C1—C20.8 (3)C7—C6—C11—C100.7 (4)
N1—N2—C12—C13143.5 (2)C11—C6—C7—C81.9 (4)
N1—N2—C12—C1736.8 (3)C6—C7—C8—C91.6 (4)
C1—N2—C12—C1341.0 (3)C7—C8—C9—Cl2178.5 (2)
C1—N2—C12—C17138.7 (2)C7—C8—C9—C100.1 (3)
C12—N2—C1—Cl10.2 (3)Cl2—C9—C10—C11179.7 (2)
C12—N2—C1—C2176.6 (2)C8—C9—C10—C111.3 (4)
C5—N3—C6—C7147.9 (2)C9—C10—C11—C60.9 (4)
C5—N3—C6—C1133.9 (3)N2—C12—C13—C14178.2 (2)
C6—N3—C5—C2179.1 (2)N2—C12—C17—C16179.6 (2)
Cl1—C1—C2—C3176.1 (2)C13—C12—C17—C160.1 (3)
Cl1—C1—C2—C53.4 (4)C17—C12—C13—C141.5 (3)
N2—C1—C2—C30.6 (3)C12—C13—C14—C151.6 (3)
N2—C1—C2—C5179.87 (19)C13—C14—C15—C160.2 (4)
C1—C2—C3—N10.2 (3)C14—C15—C16—C171.2 (4)
C1—C2—C3—C4179.6 (3)C15—C16—C17—C121.3 (3)
C1—C2—C5—N3172.0 (2)

Experimental details

Crystal data
Chemical formulaC17H13Cl2N3
Mr330.20
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)13.6471 (6), 15.6315 (3), 7.3514 (6)
V3)1568.24 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.39 × 0.34 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.839, 0.960
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
14704, 3558, 2533
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.099, 1.00
No. of reflections3558
No. of parameters201
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24
Absolute structureFlack (1983), 1627 Friedel pairs
Absolute structure parameter0.02 (6)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This work was supported by the Key Discipline Open Foundation of Zhejiang University of Technology (grant No. 20080604).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPimerova, E. V. & Voronina, E. V. (2001). J. Pharm. Chem. 35, 18–21.  Google Scholar
First citationRajavel, R., Vadivu, M. S. & Anitha, C. (2008). Eur. J. Chem. 5, 620–626.  CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSelvam, C., Jachak, S. M., Thilagavathi, R. & Chakraborti, A. K. (2005). Bioorg. Med. Chem. Lett. 15, 1793–1797.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, F.-M., Yang, L., Chen, X.-B. & Lian, Z.-X. (2007). Acta Cryst. E63, o4620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991–996.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds