organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­anilino)-3-(2-hy­droxy­ethyl)quinazolin-4(3H)-one

aSchool of Chemistry and Material Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: jiaoyuanhong1995@yahoo.com.cn

(Received 26 November 2008; accepted 20 February 2009; online 28 February 2009)

The mol­ecular and crystal structures of the title compound, C16H14FN3O2, are stabilized by intra­molecular N—H⋯O and inter­molecular O—H⋯O hydrogen bonds. The existence of non-classical intra­molecular C—H⋯N hydrogen bonds provides a dihedral angle between the fluoro-substituted benzene and pyrimidinone rings of 7.9 (1)°.

Related literature

For the pharmacological activity of N3 and C7 disubstituted quinazolines, see: Usha et al. (2006[Usha, A., Swati, O., Dinesh, B. & Ganpat, L. T. (2006). ARKIVOC, xiii, 83-89.]). For the synthesis of quinazolinone and thienopyrimidinones, see: Yang et al. (2008[Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 5, 1365-1369.]). For synthesis, drug discovery and crystal structures, see: Yang & Wu (2008[Yang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2240.]); Wang et al. (2008[Wang, H.-L., Yang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2325.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14FN3O2

  • Mr = 299.30

  • Monoclinic, P 21 /n

  • a = 8.5737 (8) Å

  • b = 10.8268 (10) Å

  • c = 15.2490 (13) Å

  • β = 104.070(10)°

  • V = 1371.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 8342 measured reflections

  • 2976 independent reflections

  • 2475 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.06

  • 2976 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N3 0.93 2.28 2.8807 (16) 122
N1—H1⋯O2 0.881 (9) 1.982 (10) 2.8253 (14) 159.7 (13)
O2—H2A⋯O1i 0.837 (9) 1.909 (10) 2.7426 (13) 173.6 (18)
Symmetry code: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinazolone derivatives have evoked considerable attention in recent years as these are endowed with wide range of pharmaceutical activities. 3H–Quinazolin–4–one represents a useful nucleus for preparation of some new sedative/hypnotic and anticonvulsant agents. Of the various quinazolines reported, the N3 and C7 disubstituted quinazolines exhibit interesting pharmacological activities like analgesic, anti–inflammatory, antibacterial and anticonvulsant activities (Usha et al., 2006). In connection with our ongoing heterocyclic synthesis and drug discovery project (Yang & Wu, 2008), we have focused on the synthesis of quinazolinone and thienopyrimidinones (Wang et al., 2008; Yang et al., 2008). Herein, the title compound was synthesied and its molecular (Fig. 1) and crystal structures were determined. An intramolecular N1—H1···O2 and non–classical C5—H5···N3 hydrogen bonds provide the conformation of the molecule - dihedral angle between the fluoro–substituted benzene ring and pyrimidinone rings as 7.9 (1)°. In the crystal structure, intermolecular O2—H2a···O1i hydrogen bonds link of molecules into chains (see Tab. 1 and Fig. 2). Symmetry code: (i) -x+5/2, y-1/2, -z+1/2.

Related literature top

For the pharmacological activity of N3 and C7 disubstituted quinazolines, see: Usha et al. (2006). For the synthesis of quinazolinone and thienopyrimidinones, see: Yang et al. (2008). For synthesis, drug discovery and crystal structures, see: Yang & Wu (2008); Wang et al. (2008).

Experimental top

To a solution of 2–ethoxycarbonyliminophosphorane (1.27 g, 3.0 mmol) in 10 ml anhydrous THF, 4–fluorophenyl isocyanate (0.41 g, 3.0 mmol) was added dropwise at room temperature. The reaction mixture was left unstirred for 6 h at 273–278 K, whereafter the above resulting solution was added dropwise to a solution of ethanolamine (0.18 g, 3 mmol) in 5 ml anhydrous THF. The reaction mixture was stirred overnight at room temperature, the solvent was removed under reduced pressure and the residue was recrystallized from C2H4Cl2/CH3OH (1:1/v:v) to give colourless crystals of the title compound. Yield 89%.

Refinement top

The C–bonded H atoms were placed in calculated positions with C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene and refined in the riding model approximation. The positional parameters of N– and O–bonded H atoms were found from difference Fourier map and refined independently. For all H atoms Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom–labeling scheme. Dispalcement ellipsoids are drawn at the 50% probability level. H at6oms are presented as a small spheres of arbitrary radius. Intramolecular hydrogen bonds are drawn by dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing intermolecular hydrogen bonds as dashed lines. Symmetry code: (i) -x+5/2, y-1/2, -z+1/2.
2-(4-Fluoroanilino)-3-(2-hydroxyethyl)quinazolin-4(3H)-one top
Crystal data top
C16H14FN3O2F(000) = 624
Mr = 299.30Dx = 1.450 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3320 reflections
a = 8.5737 (8) Åθ = 2.3–29.2°
b = 10.8268 (10) ŵ = 0.11 mm1
c = 15.2490 (13) ÅT = 273 K
β = 104.407 (1)°Block, colourless
V = 1371.0 (2) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2475 reflections with I > 2σ(I)
Radiation source: Fine–focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
ϕ and ω scansh = 1010
8342 measured reflectionsk = 1213
2976 independent reflectionsl = 1914
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: Geom
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.157P]
where P = (Fo2 + 2Fc2)/3
2976 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H14FN3O2V = 1371.0 (2) Å3
Mr = 299.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5737 (8) ŵ = 0.11 mm1
b = 10.8268 (10) ÅT = 273 K
c = 15.2490 (13) Å0.10 × 0.10 × 0.10 mm
β = 104.407 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2475 reflections with I > 2σ(I)
8342 measured reflectionsRint = 0.021
2976 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.13 e Å3
2976 reflectionsΔρmin = 0.24 e Å3
205 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56770 (14)0.34529 (11)0.09177 (9)0.0442 (3)
C20.59291 (15)0.34162 (11)0.00070 (9)0.0455 (3)
H20.54440.28130.02830.055*
C30.69136 (15)0.42908 (11)0.05135 (8)0.0427 (3)
H30.70960.42760.11410.051*
C40.76459 (13)0.52003 (10)0.01077 (8)0.0379 (3)
C50.73709 (15)0.52084 (12)0.08302 (8)0.0438 (3)
H50.78520.58070.11130.053*
C60.63794 (15)0.43247 (12)0.13419 (8)0.0458 (3)
H60.61930.43250.19690.055*
C70.94732 (13)0.70237 (10)0.05017 (7)0.0377 (3)
C81.13407 (14)0.86392 (11)0.11798 (8)0.0418 (3)
C91.15360 (14)0.88561 (11)0.02741 (8)0.0402 (3)
C101.06202 (13)0.81559 (11)0.04382 (8)0.0389 (3)
C111.08192 (15)0.83508 (12)0.13148 (8)0.0462 (3)
H111.02200.78920.17980.055*
C121.18945 (16)0.92159 (13)0.14591 (9)0.0520 (3)
H121.20250.93340.20410.062*
C131.27943 (17)0.99209 (13)0.07485 (10)0.0549 (3)
H131.35141.05100.08570.066*
C141.26168 (16)0.97446 (12)0.01099 (10)0.0504 (3)
H141.32151.02160.05860.060*
C150.97517 (16)0.76912 (12)0.21207 (8)0.0450 (3)
H15A0.86170.74840.19990.054*
H15B0.98890.85050.23950.054*
C161.06872 (18)0.67775 (13)0.27916 (8)0.0526 (3)
H16A1.18280.68610.28270.063*
H16B1.05210.69440.33870.063*
F10.46983 (11)0.25850 (8)0.14287 (6)0.0651 (3)
N10.85952 (13)0.60633 (10)0.07009 (7)0.0439 (2)
H10.8863 (16)0.5818 (12)0.1269 (6)0.053*
N21.02153 (12)0.77481 (9)0.12481 (6)0.0393 (2)
N30.96041 (12)0.72240 (9)0.03130 (6)0.0411 (2)
O11.20713 (12)0.91951 (9)0.18653 (6)0.0565 (3)
O21.01772 (12)0.55593 (9)0.25230 (6)0.0546 (3)
H2A1.0973 (16)0.5093 (14)0.2698 (12)0.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (6)0.0404 (6)0.0481 (7)0.0004 (5)0.0105 (5)0.0022 (5)
C20.0492 (7)0.0396 (6)0.0504 (7)0.0018 (5)0.0174 (6)0.0082 (5)
C30.0499 (7)0.0442 (6)0.0356 (6)0.0072 (5)0.0135 (5)0.0067 (5)
C40.0379 (6)0.0404 (6)0.0360 (6)0.0046 (5)0.0104 (5)0.0012 (5)
C50.0492 (7)0.0480 (7)0.0357 (6)0.0038 (5)0.0132 (5)0.0024 (5)
C60.0508 (7)0.0519 (7)0.0352 (6)0.0028 (6)0.0114 (5)0.0017 (5)
C70.0370 (6)0.0411 (6)0.0333 (6)0.0052 (5)0.0058 (4)0.0015 (5)
C80.0416 (6)0.0426 (6)0.0409 (6)0.0040 (5)0.0094 (5)0.0044 (5)
C90.0388 (6)0.0399 (6)0.0420 (6)0.0059 (5)0.0102 (5)0.0020 (5)
C100.0377 (6)0.0406 (6)0.0376 (6)0.0065 (5)0.0080 (5)0.0053 (5)
C110.0476 (7)0.0538 (7)0.0351 (6)0.0046 (6)0.0060 (5)0.0081 (5)
C120.0531 (7)0.0602 (8)0.0442 (7)0.0058 (6)0.0149 (6)0.0147 (6)
C130.0513 (8)0.0542 (8)0.0607 (9)0.0035 (6)0.0168 (6)0.0112 (7)
C140.0489 (7)0.0483 (7)0.0536 (8)0.0022 (6)0.0121 (6)0.0010 (6)
C150.0535 (7)0.0494 (7)0.0348 (6)0.0053 (6)0.0160 (5)0.0031 (5)
C160.0621 (8)0.0616 (8)0.0327 (6)0.0034 (6)0.0092 (6)0.0009 (6)
F10.0736 (6)0.0599 (5)0.0592 (5)0.0229 (4)0.0116 (4)0.0068 (4)
N10.0521 (6)0.0494 (6)0.0297 (5)0.0036 (5)0.0092 (4)0.0026 (4)
N20.0434 (5)0.0436 (5)0.0316 (5)0.0037 (4)0.0104 (4)0.0013 (4)
N30.0436 (5)0.0456 (6)0.0331 (5)0.0000 (4)0.0077 (4)0.0028 (4)
O10.0601 (6)0.0639 (6)0.0450 (5)0.0115 (5)0.0123 (4)0.0152 (4)
O20.0629 (6)0.0552 (6)0.0421 (5)0.0091 (4)0.0062 (4)0.0055 (4)
Geometric parameters (Å, º) top
C1—C61.3659 (17)C9—C141.4007 (17)
C1—F11.3670 (14)C10—N31.3771 (15)
C1—C21.3729 (18)C10—C111.4050 (16)
C2—C31.3716 (18)C11—C121.3699 (19)
C2—H20.9300C11—H110.9300
C3—C41.3929 (16)C12—C131.391 (2)
C3—H30.9300C12—H120.9300
C4—C51.3904 (16)C13—C141.3683 (19)
C4—N11.4098 (15)C13—H130.9300
C5—C61.3846 (17)C14—H140.9300
C5—H50.9300C15—N21.4817 (14)
C6—H60.9300C15—C161.5035 (18)
C7—N31.2932 (14)C15—H15A0.9700
C7—N11.3616 (15)C15—H15B0.9700
C7—N21.3983 (15)C16—O21.4174 (17)
C8—O11.2335 (14)C16—H16A0.9700
C8—N21.3866 (15)C16—H16B0.9700
C8—C91.4511 (16)N1—H10.881 (9)
C9—C101.3952 (16)O2—H2A0.837 (9)
C6—C1—F1119.04 (11)C12—C11—H11120.0
C6—C1—C2122.08 (12)C10—C11—H11120.0
F1—C1—C2118.88 (11)C11—C12—C13120.99 (12)
C3—C2—C1118.42 (11)C11—C12—H12119.5
C3—C2—H2120.8C13—C12—H12119.5
C1—C2—H2120.8C14—C13—C12119.76 (12)
C2—C3—C4121.34 (11)C14—C13—H13120.1
C2—C3—H3119.3C12—C13—H13120.1
C4—C3—H3119.3C13—C14—C9120.19 (13)
C5—C4—C3118.79 (11)C13—C14—H14119.9
C5—C4—N1125.37 (11)C9—C14—H14119.9
C3—C4—N1115.82 (10)N2—C15—C16114.93 (10)
C6—C5—C4119.90 (11)N2—C15—H15A108.5
C6—C5—H5120.0C16—C15—H15A108.5
C4—C5—H5120.0N2—C15—H15B108.5
C1—C6—C5119.46 (11)C16—C15—H15B108.5
C1—C6—H6120.3H15A—C15—H15B107.5
C5—C6—H6120.3O2—C16—C15109.98 (11)
N3—C7—N1121.83 (11)O2—C16—H16A109.7
N3—C7—N2123.86 (10)C15—C16—H16A109.7
N1—C7—N2114.31 (10)O2—C16—H16B109.7
O1—C8—N2119.47 (11)C15—C16—H16B109.7
O1—C8—C9124.96 (11)H16A—C16—H16B108.2
N2—C8—C9115.56 (10)C7—N1—C4128.75 (10)
C10—C9—C14120.21 (11)C7—N1—H1115.3 (9)
C10—C9—C8118.50 (11)C4—N1—H1113.5 (9)
C14—C9—C8121.29 (11)C8—N2—C7120.89 (10)
N3—C10—C9122.90 (10)C8—N2—C15116.33 (10)
N3—C10—C11118.21 (11)C7—N2—C15122.56 (10)
C9—C10—C11118.75 (11)C7—N3—C10117.72 (10)
C12—C11—C10120.09 (12)C16—O2—H2A107.5 (13)
C6—C1—C2—C30.31 (19)C12—C13—C14—C90.1 (2)
F1—C1—C2—C3179.97 (10)C10—C9—C14—C130.76 (19)
C1—C2—C3—C40.08 (18)C8—C9—C14—C13179.16 (12)
C2—C3—C4—C50.34 (18)N2—C15—C16—O274.18 (14)
C2—C3—C4—N1178.41 (11)N3—C7—N1—C43.84 (19)
C3—C4—C5—C60.23 (18)N2—C7—N1—C4176.74 (11)
N1—C4—C5—C6178.39 (11)C5—C4—N1—C73.0 (2)
F1—C1—C6—C5179.92 (11)C3—C4—N1—C7178.32 (11)
C2—C1—C6—C50.42 (19)O1—C8—N2—C7174.16 (11)
C4—C5—C6—C10.14 (19)C9—C8—N2—C76.98 (16)
O1—C8—C9—C10179.80 (11)O1—C8—N2—C1511.04 (16)
N2—C8—C9—C101.02 (16)C9—C8—N2—C15167.81 (10)
O1—C8—C9—C140.28 (19)N3—C7—N2—C89.29 (17)
N2—C8—C9—C14179.06 (11)N1—C7—N2—C8170.11 (10)
C14—C9—C10—N3176.35 (11)N3—C7—N2—C15165.17 (11)
C8—C9—C10—N33.57 (17)N1—C7—N2—C1515.43 (15)
C14—C9—C10—C110.73 (17)C16—C15—N2—C894.13 (13)
C8—C9—C10—C11179.20 (10)C16—C15—N2—C791.16 (14)
N3—C10—C11—C12175.91 (11)N1—C7—N3—C10174.89 (10)
C9—C10—C11—C120.08 (18)N2—C7—N3—C104.47 (17)
C10—C11—C12—C130.6 (2)C9—C10—N3—C71.96 (17)
C11—C12—C13—C140.5 (2)C11—C10—N3—C7177.61 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N30.932.282.8807 (16)122
N1—H1···O20.88 (1)1.98 (1)2.8253 (14)160 (1)
O2—H2A···O1i0.84 (1)1.91 (1)2.7426 (13)174 (2)
Symmetry code: (i) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14FN3O2
Mr299.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)8.5737 (8), 10.8268 (10), 15.2490 (13)
β (°) 104.407 (1)
V3)1371.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8342, 2976, 2475
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.06
No. of reflections2976
No. of parameters205
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N30.932.282.8807 (16)122.0
N1—H1···O20.881 (9)1.982 (10)2.8253 (14)159.7 (13)
O2—H2A···O1i0.837 (9)1.909 (10)2.7426 (13)173.6 (18)
Symmetry code: (i) x+5/2, y1/2, z+1/2.
 

Acknowledgements

We acknowledge financial support by the Huangshi Institute of Technology (grant Nos. 08yjz23B & 07yjz18B), P. R. China.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, A., Swati, O., Dinesh, B. & Ganpat, L. T. (2006). ARKIVOC, xiii, 83–89.  Google Scholar
First citationWang, H.-L., Yang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 5, 1365–1369.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds