organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2,2-bis­­(2-cyano­ethyl)malonate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wjt@njut.edu.cn

(Received 25 February 2008; accepted 3 March 2008; online 16 April 2008)

The asymmetric unit of the title compound, C11H14N2O4, contains one half-mol­ecule; a twofold rotation axis passes through the central C atom. Inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into a one-dimensional supra­molecular structure.

Related literature

For general background, see: Kim et al. (2001[Kim, D. Y., Huh, S. C. & Kim, S. M. (2001). Tetrahedron Lett. 42, 6299-6301.]); Chetia et al. (2004[Chetia, A., Saikia, C. J., Lekhok, K. C. & Boruah, R. C. (2004). Tetrahedron Lett. 45, 2649-2651.]); Zhang et al. (2004[Zhang, Z., Dong, Y.-W., Wang, G.-W. & Komatsu, K. (2004). Synlett, 1, 61-64.]); Ranu & Banerjee (2005[Ranu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049-3052.]). For bond–length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O4

  • Mr = 238.24

  • Monoclinic, C 2/c

  • a = 13.071 (3) Å

  • b = 8.5060 (17) Å

  • c = 10.914 (2) Å

  • β = 90.55 (3)°

  • V = 1213.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.961, Tmax = 0.975

  • 1140 measured reflections

  • 1091 independent reflections

  • 860 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.155

  • S = 0.99

  • 1091 reflections

  • 78 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯N1i 0.96 2.57 3.494 (5) 161
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dicarbonyl compounds represent an important class of starting materials to increase the carbon number of organic compounds (Kim et al., 2001). Some dicarbonyl compounds are useful for the synthesis of enantiomerically pure alcohols (Chetia et al., 2004).

Many dicarbonyl compounds have been synthesized with "Michael Addition" method using diethy malonate as starting compound, but only a few "Michael Addition" diadducts were synthesized under normal condition (Zhang et al., 2004; Ranu & Banerjee, 2005). We are focusing our synthetic and structure studies on new products of "Michael Addition" diadducts from dicarbonyl compounds. We here report the crystal structure of the title compound (I).

The atom–numbering scheme of I is shown in Fig. 1, and all bond lengths and angles are within normal ranges (Allen et al., 1987). The asymmetric unit contains one half–molecule, and C4 lies on the twofold rotation axis vertical to ac plane, which generates the other half–molecule. An intermolecular C—H···N hydrogen bond (table and Fig. 2) helps to establish the 1–D supramolecular structure.

Related literature top

For general background, see: Kim et al. (2001); Chetia et al. (2004); Zhang et al. (2004); Ranu & Banerjee (2005). For bond–length data, see: Allen et al. (1987).

Experimental top

Dimethyl malonate (50 mmol) was dissolves in n–hexane (20 ml), then anhydrous potassium carbonate (100 mmol) and tetrabutylammonium bromide (1 g) was added. Finally acrylonitrile (100 mmol) was slowly dropped to the solution above. The resulting mixture was refluxed for 12 h, and 100 ml water was added to the mixture and the organic layer was dried with magnesium sulfate and vacuumed to removed the solvent. Then the crude compound I was obtained. It was crystallized from ethyl acetate (15 ml). Crystals of I suitable for X–ray diffraction were obtained by slow evaporation of an alcohol solution. 1H NMR (CDCl3, δ, p.p.m.) 3.83 (s, 6H), 2.47 (t, 4H), 2.26 (t, 4H).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.96 and 0.97Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for methylene H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of I showing the atom–numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a spheres of arbitrary radius.
[Figure 2] Fig. 2. The 1–D supramolecular structure developed by C—H···N hydrogen bonds (dashed lines) [Symmetry codes: (i) -x, 2 - y, 1 - z].
Dimethyl 2,2-bis(2-cyanoethyl)malonate top
Crystal data top
C11H14N2O4F(000) = 504
Mr = 238.24Dx = 1.304 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 13.071 (3) Åθ = 10–14°
b = 8.5060 (17) ŵ = 0.10 mm1
c = 10.914 (2) ÅT = 293 K
β = 90.55 (3)°Block, colourless
V = 1213.4 (4) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
860 reflections with I > 2σ(I)
Radiation source: Fine–focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.2°, θmin = 2.9°
ω/2θ scansh = 1515
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.961, Tmax = 0.975l = 012
1140 measured reflections3 standard reflections every 200 reflections
1091 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: Geom
wR(F2) = 0.155H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0591P)2 + 3.2284P]
where P = (Fo2 + 2Fc2)/3
1091 reflections(Δ/σ)max < 0.001
78 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H14N2O4V = 1213.4 (4) Å3
Mr = 238.24Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.071 (3) ŵ = 0.10 mm1
b = 8.5060 (17) ÅT = 293 K
c = 10.914 (2) Å0.40 × 0.30 × 0.20 mm
β = 90.55 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
860 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.961, Tmax = 0.9753 standard reflections every 200 reflections
1140 measured reflections intensity decay: none
1091 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 0.99Δρmax = 0.21 e Å3
1091 reflectionsΔρmin = 0.24 e Å3
78 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and RR–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1143 (3)0.5595 (3)0.4119 (3)0.0730 (10)
C10.1098 (2)0.6248 (3)0.5039 (3)0.0471 (7)
O10.15852 (15)1.0070 (2)0.6705 (2)0.0516 (6)
O20.09191 (13)1.1101 (2)0.84034 (16)0.0402 (5)
C20.1041 (3)0.7072 (4)0.6228 (3)0.0589 (9)
H2A0.10560.63110.68900.071*
H2B0.16280.77600.63120.071*
C30.00519 (19)0.8043 (3)0.6315 (2)0.0333 (6)
H3A0.00130.87370.56120.040*
H3B0.05320.73400.62930.040*
C40.00000.9032 (4)0.75000.0301 (8)
C50.09365 (19)1.0115 (3)0.7444 (2)0.0309 (6)
C60.1753 (2)1.2212 (4)0.8494 (3)0.0481 (8)
H6A0.16671.28530.92090.072*
H6B0.17561.28670.77780.072*
H6C0.23901.16530.85550.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0893 (16)0.0651 (16)0.0628 (19)0.0048 (16)0.0436 (17)0.0172 (15)
C10.0547 (18)0.0469 (14)0.0532 (17)0.0015 (14)0.0192 (13)0.0050 (14)
O10.0430 (12)0.0432 (12)0.0585 (14)0.0076 (9)0.0028 (10)0.0102 (10)
O20.0498 (10)0.0442 (10)0.0465 (11)0.0111 (8)0.0098 (8)0.0088 (8)
C20.0571 (18)0.0484 (17)0.0582 (13)0.0162 (16)0.0205 (16)0.0162 (15)
C30.0404 (14)0.0479 (12)0.0355 (13)0.0018 (11)0.0067 (10)0.0007 (10)
C40.0476 (19)0.0472 (16)0.0355 (18)0.0017 (10)0.0025 (14)0.0006 (10)
C50.0421 (13)0.0469 (13)0.0344 (13)0.0058 (10)0.0093 (10)0.0032 (10)
C60.0477 (17)0.0452 (16)0.0549 (18)0.0162 (14)0.0138 (13)0.0046 (13)
Geometric parameters (Å, º) top
N1—C11.149 (4)C3—H3A0.9700
C1—C21.476 (4)C3—H3B0.9700
O1—C51.177 (3)C4—C51.534 (3)
O2—C51.341 (3)C4—C5i1.534 (3)
O2—C61.445 (3)C4—C3i1.544 (3)
C2—C31.537 (4)C6—H6A0.9600
C2—H2A0.9700C6—H6B0.9600
C2—H2B0.9700C6—H6C0.9600
C3—C41.544 (3)
N1—C1—C2179.4 (4)C5—C4—C3108.85 (13)
C5—O2—C6116.3 (2)C5i—C4—C3109.39 (13)
C1—C2—C3110.1 (3)C5—C4—C3i109.39 (13)
C1—C2—H2A109.6C5i—C4—C3i108.85 (13)
C3—C2—H2A109.6C3—C4—C3i113.9 (3)
C1—C2—H2B109.6O1—C5—O2125.0 (2)
C3—C2—H2B109.6O1—C5—C4126.0 (2)
H2A—C2—H2B108.1O2—C5—C4108.96 (19)
C2—C3—C4112.0 (2)O2—C6—H6A109.5
C2—C3—H3A109.2O2—C6—H6B109.5
C4—C3—H3A109.2H6A—C6—H6B109.5
C2—C3—H3B109.2O2—C6—H6C109.5
C4—C3—H3B109.2H6A—C6—H6C109.5
H3A—C3—H3B107.9H6B—C6—H6C109.5
C5—C4—C5i106.2 (3)
C1—C2—C3—C4175.4 (2)C5i—C4—C5—O1126.7 (3)
C2—C3—C4—C5173.0 (2)C3—C4—C5—O19.0 (3)
C2—C3—C4—C5i57.4 (3)C3i—C4—C5—O1116.0 (3)
C2—C3—C4—C3i64.63 (19)C5i—C4—C5—O255.37 (14)
C6—O2—C5—O12.0 (4)C3—C4—C5—O2173.02 (18)
C6—O2—C5—C4180.0 (2)C3i—C4—C5—O261.9 (2)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···N1ii0.962.573.494 (5)161
Symmetry code: (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC11H14N2O4
Mr238.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.071 (3), 8.5060 (17), 10.914 (2)
β (°) 90.55 (3)
V3)1213.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.961, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
1140, 1091, 860
Rint0.048
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.155, 0.99
No. of reflections1091
No. of parameters78
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···N1i0.962.573.494 (5)161
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChetia, A., Saikia, C. J., Lekhok, K. C. & Boruah, R. C. (2004). Tetrahedron Lett. 45, 2649–2651.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD–4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, D. Y., Huh, S. C. & Kim, S. M. (2001). Tetrahedron Lett. 42, 6299–6301.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRanu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049–3052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z., Dong, Y.-W., Wang, G.-W. & Komatsu, K. (2004). Synlett, 1, 61–64.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds