Download citation
Download citation
link to html
The title peptide, N-(tert-butoxy­carbon­yl)phenyl­alanyl-D-prolylglycine methyl ester monohydrate, C22H31N3O6·H2O, was designed to form a β-turn structure. The crystal structure exhibits a type-II β-turn structure which is stabilized through the inter­molecular hydrogen bond between the Gly–NH group and the tert-butyl­oxycarbonyl O atom. The water mol­ecule further inter­acts with the carbonyl O atoms of the peptide, stabilizing the β-turn structure. The circular dichroism spectra suggest the existence of a stable conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807056693/rk2053sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807056693/rk2053Isup2.hkl
Contains datablock I

CCDC reference: 672925

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.060
  • wR factor = 0.177
  • Data-to-parameter ratio = 10.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C10
Alert level C STRVA01_ALERT_4_C Flack parameter is too small From the CIF: _refine_ls_abs_structure_Flack -3.000 From the CIF: _refine_ls_abs_structure_Flack_su 2.000 PLAT032_ALERT_4_C Std. Uncertainty in Flack Parameter too High ... 2.00 PLAT033_ALERT_2_C Flack Parameter Value Deviates 2 * su from zero. -3.00 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.78 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.46 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O10 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C41 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.10 From the CIF: _reflns_number_total 3002 Count of symmetry unique reflns 3012 Completeness (_total/calc) 99.67% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C20 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C30 = . R
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The certain motifs have been studied to engineer peptide mimics with well defined conformation and novel functions (Venkatraman et al., 2001). The structural studies of these motifs will provide the important fundamental information for peptide design. A protected tripeptide Boc-Phe-D-Pro-Gly-OMe, that Boc = N-t-butyloxycarbonyl moiety, was designed to form β-turn from motifs of Gramicidin S (Schwyzer & Ludescher, 1968) and analogues (Tamaki et al., 1985) considering a D-Pro-Gly segment of β-hairpin peptide (Espinosa & Gellman, 2000).

The molecular structure of the title compound (I) is shown in Fig.1. A l l peptide bonds are planar with a trans conformation. The distances of the atoms from the best planes of peptide bond are lower than 0.062Å for the C14—N20, C28—N30 and C34—N40 bond planes. The Pro residue shows a ring puckering with amplitude of Q2 = 0.408 (5)Å and phase of ϕ2 = 261.2 (5)° (Cremer & Pople, 1975). The torsion angles, (C14—N20—C20—C28, N20—C20—C28—N30) and (C28—N30—C30—C34, N30—C30—C34—N40), are (-54.6 (4)°, 129.8 (3)°) and (86.9 (4)°, -14.0 (5)°), respectively, and classified as type II β-turn. A N–H···O=C intramolecular hydrogen bond is formed between Gly–NH and Boc=O: N40···O14 = 3.097 (4)Å stabilizing of the β-turn structure. In this crystal, the hydrated water molecule further stabilizes the folded structure by forming O–H···O=C interactions with the carbonyl oxygen atoms (O1···O14 and O1···O41). A N–H···O=C interaction is established between the Gly residue (N20) and Pro residue (O28) translated by (1/2 + x, 3/2 - y, 2 - z). This motif propagates along the a axis (Fig. 2).

The CD spectra of I are measured in acetonitrile solutions changing the trifluoroethanol (TFE) concentration. TFE provides a specific environment conducive to hydrophobic interactions between peptide side chains (Reiersen & Rees, 2000), and is often used to induce structural changes of polypeptides. The isosbestic point around 220 nm indicates the conformational equilibrium, but several concentrations of TFE had little effect on the spectra (Fig.3), indicating that the solution conformations of I are stable with respect to TFE titration. These results indicate that this tripeptide motif forms a stable β-turn structure and could be a candidate to induce β-turn into poplypeptides.

Related literature top

For related literature, see: Cremer & Pople (1975); Espinosa & Gellman (2000); Reiersen & Rees (2000); Schwyzer & Ludescher (1968); Tamaki et al., (1985); Venkatraman et al., (2001).

For related literature, see: Flack & Bernardinelli (2000).

Experimental top

The title compound was synthesized by a conventional liquid-phase method, and purified by silica-gel column chromatography and re-crystallization, respectively. Crystals were grown from ethylacetate and methanol (3:1) solutions by vapor diffusion method. CD spectra were measured by JASCO J-820 dichrograph at approximate 0.05 mmol dm-3 peptide concentrations. Spectra were scanned at 5 nm.min-1 speed with 0.1 nm interval-uptake to a computer. Data were averaged at each 1 nm and plotted.

Refinement top

H atoms were treated as riding atoms with distances C–H = 0.96–0.98Å and N–H = 0.86 Å; Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(Cmethyl) and Uiso(H) = 1.2Ueq(N). H atoms of the water molecule were found in a difference Fourier map considering hydrogen-bond networks and refined with Uiso(H) = 1.5Ueq(O). In the absence of any significant anomalous scattering, 2290 Friedel pairs were merged prior to the final refinements, and the absolute structure was set by reference to the known chirality of the amino acid employed.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Views of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius. Dotted lines represent hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of I. Side chains of amino acids are omitted for clarity. H atoms related to hydrogen bonds are included in drawing. Dotted lines represent hydrogen bonds. Open and closed circles represent non-hydrogen atoms and water molecules - O1.
[Figure 3] Fig. 3. CD spectra of I. Trifluoroethanol was added to acetonitrile solutions to concentrations of 0, 10, 20, 30 and 40%.
Boc-Phe-D-Pro-Gly-OMe monohydrate top
Crystal data top
C22H31N3O6·H2OF(000) = 968
Mr = 451.51Dx = 1.245 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7049 reflections
a = 9.0814 (8) Åθ = 2.4–22.1°
b = 11.6889 (10) ŵ = 0.09 mm1
c = 22.685 (2) ÅT = 296 K
V = 2408.1 (4) Å3Needle, colourless
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3002 independent reflections
Radiation source: MacScience M18XCE (rotating anode)2771 reflections with I > 2σ(I)
Confocal multilayer optics monochromatorRint = 0.031
Detector resolution: 8.366 pixels mm-1θmax = 27.1°, θmin = 1.8°
ω–scanh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.912, Tmax = 0.982l = 2829
28185 measured reflections
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: Geom
wR(F2) = 0.177H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1079P)2 + 0.5338P]
where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H31N3O6·H2OV = 2408.1 (4) Å3
Mr = 451.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0814 (8) ŵ = 0.09 mm1
b = 11.6889 (10) ÅT = 296 K
c = 22.685 (2) Å0.40 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3002 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2771 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.982Rint = 0.031
28185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.11Δρmax = 0.28 e Å3
3002 reflectionsΔρmin = 0.27 e Å3
289 parameters
Special details top

Geometry. Cremer & Pople Puckering Parameters ———————————– Q(2) = 0.4080 (47) Å, Phi(2) = 261.2 (5)°

The equation of the plane is of the form: P * x + Q * y + R * z - S = 0 where P, Q, R, S are constants and x, y, z are fractional coordinates.

P = 6.063 (7), Q = 5.023 (11), R = -13.79 (2), S = -3.43 (3) Atom Distance x y z X Y Z O10 0.033 (3) 0.9104 1.0015 1.0110 8.2677 11.7064 22.9345 O14 - 0.023 (3) 0.7517 0.9726 0.9348 6.8265 11.3686 21.2050 N20 - 0.007 (3) 0.9224 0.8418 0.9611 8.3767 9.8397 21.8016 C14 - 0.003 (3) 0.8530 0.9413 0.9665 7.7464 11.0028 21.9251 C20 0.032 (3) 0.8853 0.7638 0.9135 8.0398 8.9280 20.7223 H20 - 0.03253 0.9899 0.8235 0.9859 8.9897 9.6258 22.3651

P = -2.027 (10), Q =11.121 (5), R = 4.81 (3), S = 11.14 (3) Atom Distance x y z X Y Z O28 0.008 (2) 0.6619 0.7070 0.9607 6.0110 8.2641 21.7944 N30 max 0.062 (2) 0.6433 0.7499 0.8650 5.8421 8.7655 19.6218 C20 - 0.041 (2) 0.8853 0.7638 0.9135 8.0398 8.9280 20.7223 C28 0.023 (2) 0.7192 0.7387 0.9147 6.5313 8.6346 20.7497 C30 - 0.051 (4) 0.4893 0.7135 0.8609 4.4435 8.3400 19.5297

P = -1.364 (12), Q = -5.598 (12), R = 19.621 (12), S = 12.24 (2) Atom Distance x y z X Y Z O34 0.009 (3) 0.2493 0.7954 0.8686 2.2640 9.2973 19.7040 N40 0.002 (3) 0.4315 0.8956 0.9095 3.9186 10.4686 20.6322 C30 - 0.011 (3) 0.4893 0.7135 0.8609 4.4435 8.3400 19.5297 C34 0.002 (3) 0.3787 0.8057 0.8802 3.4391 9.4177 19.9664 C40 - 0.012 (3) 0.3298 0.9842 0.9270 2.9950 11.5042 21.0288 H40 0.01105 0.5237 0.9006 0.9178 4.7559 10.5270 20.8203

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.8478 (4)1.1109 (3)1.02972 (16)0.0502 (8)
O100.9104 (4)1.0015 (2)1.01100 (14)0.0718 (9)
C110.9449 (6)1.1437 (4)1.0808 (3)0.0986 (19)
H11A1.04461.15181.06730.148*
H11B0.94041.08531.11050.148*
H11C0.91171.21501.09710.148*
C120.6942 (6)1.0963 (5)1.0481 (3)0.0984 (18)
H12A0.63561.07491.01460.148*
H12B0.65801.16691.06410.148*
H12C0.68841.03751.07750.148*
C130.8604 (8)1.1983 (4)0.9807 (3)0.0990 (19)
H13A0.96191.20700.96980.149*
H13B0.82241.27040.99410.149*
H13C0.80481.17280.94720.149*
C140.8530 (4)0.9413 (3)0.96650 (14)0.0468 (7)
O140.7517 (3)0.9726 (2)0.93476 (12)0.0571 (7)
N200.9224 (3)0.8418 (2)0.96106 (12)0.0442 (6)
H200.98990.82350.98590.053*
C200.8853 (3)0.7638 (2)0.91348 (12)0.0358 (6)
H20A0.91260.79760.87550.043*
C210.9679 (3)0.6509 (3)0.92253 (13)0.0432 (7)
H21A1.07250.66670.92580.052*
H21B0.93600.61650.95930.052*
C220.9433 (4)0.5669 (3)0.87295 (14)0.0444 (7)
C231.0342 (5)0.5667 (3)0.82448 (15)0.0584 (9)
H231.11190.61840.82230.070*
C241.0108 (6)0.4904 (4)0.77903 (18)0.0772 (13)
H241.07370.49090.74670.093*
C250.8975 (7)0.4143 (4)0.7808 (2)0.0861 (16)
H250.88180.36400.74960.103*
C260.8071 (6)0.4129 (4)0.8288 (2)0.0812 (14)
H260.73020.36040.83060.097*
C270.8288 (5)0.4889 (3)0.87470 (19)0.0617 (9)
H270.76590.48760.90700.074*
C280.7192 (3)0.7387 (2)0.91469 (12)0.0356 (6)
O280.6619 (2)0.7070 (2)0.96074 (9)0.0492 (5)
N300.6433 (3)0.7499 (2)0.86497 (10)0.0401 (5)
C300.4893 (4)0.7135 (3)0.86091 (15)0.0480 (7)
H300.47430.64370.88410.058*
C310.4722 (5)0.6873 (4)0.79539 (19)0.0746 (13)
H31A0.50920.61170.78580.090*
H31B0.37020.69310.78300.090*
C320.5646 (5)0.7791 (5)0.76797 (16)0.0762 (13)
H32A0.51310.85180.76800.091*
H32B0.59040.75950.72770.091*
C330.7009 (4)0.7845 (4)0.80662 (14)0.0576 (9)
H33A0.77610.73200.79290.069*
H33B0.74130.86130.80780.069*
C340.3787 (3)0.8057 (3)0.88016 (15)0.0468 (7)
O340.2493 (3)0.7954 (3)0.86859 (15)0.0707 (8)
N400.4315 (3)0.8956 (2)0.90951 (13)0.0482 (6)
H400.52370.90060.91780.058*
C400.3298 (4)0.9842 (3)0.92699 (15)0.0550 (8)
H40A0.37721.03440.95530.066*
H40B0.24500.94970.94600.066*
C410.2794 (4)1.0531 (3)0.87493 (16)0.0509 (8)
O410.3458 (4)1.0663 (3)0.83062 (14)0.0852 (10)
O420.1512 (4)1.1022 (3)0.88564 (11)0.0715 (8)
C420.0908 (6)1.1746 (5)0.8400 (2)0.0863 (15)
H42A0.00191.20510.85290.129*
H42B0.07641.13040.80480.129*
H42C0.15781.23620.83210.129*
O10.6824 (7)1.0983 (6)0.8311 (2)0.164 (3)
H10.58751.08880.82830.246*
H20.70081.06750.86370.246*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0463 (17)0.0414 (15)0.0630 (19)0.0005 (14)0.0013 (16)0.0147 (14)
O100.0724 (17)0.0570 (15)0.0861 (18)0.0250 (14)0.0374 (16)0.0325 (14)
C110.102 (4)0.076 (3)0.118 (4)0.021 (3)0.040 (4)0.056 (3)
C120.071 (3)0.107 (4)0.118 (4)0.025 (3)0.031 (3)0.045 (3)
C130.142 (5)0.054 (2)0.102 (4)0.025 (3)0.013 (4)0.002 (2)
C140.0425 (16)0.0442 (15)0.0538 (17)0.0041 (13)0.0115 (14)0.0057 (14)
O140.0592 (14)0.0439 (12)0.0682 (15)0.0113 (11)0.0210 (12)0.0070 (11)
N200.0409 (13)0.0408 (12)0.0508 (14)0.0078 (11)0.0126 (11)0.0085 (11)
C200.0359 (13)0.0376 (13)0.0338 (13)0.0024 (11)0.0017 (11)0.0030 (11)
C210.0406 (15)0.0422 (15)0.0469 (16)0.0069 (13)0.0018 (13)0.0044 (13)
C220.0482 (16)0.0366 (14)0.0485 (16)0.0106 (13)0.0047 (14)0.0050 (13)
C230.066 (2)0.0539 (19)0.0554 (19)0.0128 (18)0.0079 (17)0.0022 (16)
C240.098 (3)0.074 (3)0.059 (2)0.030 (3)0.004 (2)0.013 (2)
C250.123 (4)0.065 (3)0.070 (3)0.027 (3)0.024 (3)0.029 (2)
C260.080 (3)0.059 (2)0.104 (4)0.002 (2)0.020 (3)0.023 (2)
C270.061 (2)0.0507 (19)0.074 (2)0.0009 (18)0.000 (2)0.0106 (17)
C280.0368 (14)0.0333 (13)0.0368 (13)0.0023 (11)0.0047 (11)0.0060 (11)
O280.0439 (11)0.0626 (13)0.0410 (11)0.0012 (11)0.0082 (10)0.0063 (10)
N300.0385 (12)0.0438 (13)0.0381 (12)0.0012 (11)0.0003 (10)0.0048 (10)
C300.0407 (15)0.0455 (16)0.0579 (18)0.0008 (14)0.0050 (14)0.0133 (14)
C310.065 (2)0.092 (3)0.068 (2)0.004 (2)0.018 (2)0.040 (2)
C320.077 (3)0.114 (4)0.0384 (17)0.023 (3)0.0121 (18)0.012 (2)
C330.059 (2)0.078 (2)0.0359 (15)0.008 (2)0.0032 (14)0.0001 (15)
C340.0370 (15)0.0526 (17)0.0507 (17)0.0009 (14)0.0010 (13)0.0005 (14)
O340.0381 (12)0.0759 (17)0.098 (2)0.0033 (13)0.0020 (13)0.0149 (16)
N400.0412 (14)0.0477 (14)0.0556 (15)0.0058 (12)0.0032 (12)0.0073 (12)
C400.056 (2)0.0549 (18)0.0539 (19)0.0105 (17)0.0059 (16)0.0049 (15)
C410.0487 (18)0.0490 (17)0.0550 (19)0.0046 (15)0.0004 (15)0.0061 (14)
O410.077 (2)0.103 (2)0.0761 (19)0.019 (2)0.0196 (18)0.0275 (18)
O420.0710 (17)0.0838 (19)0.0597 (14)0.0340 (16)0.0007 (14)0.0016 (14)
C420.093 (3)0.097 (4)0.069 (3)0.037 (3)0.018 (3)0.003 (2)
O10.137 (5)0.208 (6)0.145 (4)0.028 (5)0.035 (4)0.081 (5)
Geometric parameters (Å, º) top
C10—O101.462 (4)C26—H260.9300
C10—C121.466 (6)C27—H270.9300
C10—C111.505 (6)C28—O281.224 (3)
C10—C131.514 (6)C28—N301.328 (4)
O10—C141.336 (4)N30—C301.465 (4)
C11—H11A0.9600N30—C331.480 (4)
C11—H11B0.9600C30—C311.526 (5)
C11—H11C0.9600C30—C341.537 (5)
C12—H12A0.9600C30—H300.9800
C12—H12B0.9600C31—C321.498 (7)
C12—H12C0.9600C31—H31A0.9700
C13—H13A0.9600C31—H31B0.9700
C13—H13B0.9600C32—C331.518 (5)
C13—H13C0.9600C32—H32A0.9700
C14—O141.224 (4)C32—H32B0.9700
C14—N201.329 (4)C33—H33A0.9700
N20—C201.453 (3)C33—H33B0.9700
N20—H200.8600C34—O341.210 (4)
C20—C211.531 (4)C34—N401.333 (4)
C20—C281.537 (4)N40—C401.444 (4)
C20—H20A0.9800N40—H400.8600
C21—C221.510 (4)C40—C411.501 (5)
C21—H21A0.9700C40—H40A0.9700
C21—H21B0.9700C40—H40B0.9700
C22—C231.375 (5)C41—O411.182 (5)
C22—C271.384 (5)C41—O421.320 (5)
C23—C241.380 (6)O42—C421.445 (5)
C23—H230.9300C42—H42A0.9600
C24—C251.361 (8)C42—H42B0.9600
C24—H240.9300C42—H42C0.9600
C25—C261.364 (8)O1—H10.872
C25—H250.9300O1—H20.838
C26—C271.383 (6)
O10—C10—C12110.5 (4)C27—C26—H26119.7
O10—C10—C11102.6 (3)C26—C27—C22120.6 (4)
C12—C10—C11111.6 (4)C26—C27—H27119.7
O10—C10—C13110.3 (3)C22—C27—H27119.7
C12—C10—C13111.0 (5)O28—C28—N30122.3 (3)
C11—C10—C13110.5 (4)O28—C28—C20119.3 (3)
C14—O10—C10121.9 (3)N30—C28—C20118.4 (2)
C10—C11—H11A109.5C28—N30—C30121.3 (3)
C10—C11—H11B109.5C28—N30—C33127.1 (3)
H11A—C11—H11B109.5C30—N30—C33111.1 (3)
C10—C11—H11C109.5N30—C30—C31102.5 (3)
H11A—C11—H11C109.5N30—C30—C34113.7 (3)
H11B—C11—H11C109.5C31—C30—C34110.6 (3)
C10—C12—H12A109.5N30—C30—H30109.9
C10—C12—H12B109.5C31—C30—H30109.9
H12A—C12—H12B109.5C34—C30—H30109.9
C10—C12—H12C109.5C32—C31—C30101.8 (3)
H12A—C12—H12C109.5C32—C31—H31A111.4
H12B—C12—H12C109.5C30—C31—H31A111.4
C10—C13—H13A109.5C32—C31—H31B111.4
C10—C13—H13B109.5C30—C31—H31B111.4
H13A—C13—H13B109.5H31A—C31—H31B109.3
C10—C13—H13C109.5C31—C32—C33104.3 (3)
H13A—C13—H13C109.5C31—C32—H32A110.9
H13B—C13—H13C109.5C33—C32—H32A110.9
O14—C14—N20124.3 (3)C31—C32—H32B110.9
O14—C14—O10125.5 (3)C33—C32—H32B110.9
N20—C14—O10110.2 (3)H32A—C32—H32B108.9
C14—N20—C20120.6 (2)N30—C33—C32102.6 (3)
C14—N20—H20119.7N30—C33—H33A111.3
C20—N20—H20119.7C32—C33—H33A111.3
N20—C20—C21109.1 (2)N30—C33—H33B111.3
N20—C20—C28109.5 (2)C32—C33—H33B111.3
C21—C20—C28108.3 (2)H33A—C33—H33B109.2
N20—C20—H20A110.0O34—C34—N40122.4 (3)
C21—C20—H20A110.0O34—C34—C30120.2 (3)
C28—C20—H20A110.0N40—C34—C30117.4 (3)
C22—C21—C20112.8 (2)C34—N40—C40118.2 (3)
C22—C21—H21A109.0C34—N40—H40120.9
C20—C21—H21A109.0C40—N40—H40120.9
C22—C21—H21B109.0N40—C40—C41111.3 (3)
C20—C21—H21B109.0N40—C40—H40A109.4
H21A—C21—H21B107.8C41—C40—H40A109.4
C23—C22—C27118.2 (3)N40—C40—H40B109.4
C23—C22—C21120.5 (3)C41—C40—H40B109.4
C27—C22—C21121.2 (3)H40A—C40—H40B108.0
C22—C23—C24120.4 (4)O41—C41—O42123.4 (4)
C22—C23—H23119.8O41—C41—C40125.7 (3)
C24—C23—H23119.8O42—C41—C40110.9 (3)
C25—C24—C23121.1 (4)C41—O42—C42117.2 (3)
C25—C24—H24119.4O42—C42—H42A109.5
C23—C24—H24119.4O42—C42—H42B109.5
C24—C25—C26119.1 (4)H42A—C42—H42B109.5
C24—C25—H25120.5O42—C42—H42C109.5
C26—C25—H25120.5H42A—C42—H42C109.5
C25—C26—C27120.5 (5)H42B—C42—H42C109.5
C25—C26—H26119.7H1—O1—H2101.9
C12—C10—O10—C1459.6 (5)O28—C28—N30—C306.4 (4)
C11—C10—O10—C14178.7 (4)C20—C28—N30—C30172.1 (3)
C13—C10—O10—C1463.6 (5)O28—C28—N30—C33178.4 (3)
C10—O10—C14—O145.0 (6)C20—C28—N30—C330.1 (5)
C10—O10—C14—N20175.4 (3)C28—N30—C30—C31153.7 (3)
O14—C14—N20—C203.1 (5)C33—N30—C30—C3119.4 (4)
O10—C14—N20—C20176.5 (3)C28—N30—C30—C3486.9 (4)
C14—N20—C20—C21173.0 (3)C33—N30—C30—C34100.0 (3)
C14—N20—C20—C2854.6 (4)N30—C30—C31—C3237.2 (4)
N20—C20—C21—C22176.4 (3)C34—C30—C31—C3284.4 (4)
C28—C20—C21—C2264.4 (3)C30—C31—C32—C3342.0 (4)
C20—C21—C22—C2389.4 (4)C28—N30—C33—C32178.8 (3)
C20—C21—C22—C2790.1 (4)C30—N30—C33—C326.2 (4)
C27—C22—C23—C240.0 (5)C31—C32—C33—N3030.0 (4)
C21—C22—C23—C24179.5 (3)N30—C30—C34—O34165.9 (4)
C22—C23—C24—C250.5 (6)C31—C30—C34—O3451.2 (5)
C23—C24—C25—C260.9 (7)N30—C30—C34—N4014.0 (5)
C24—C25—C26—C271.0 (7)C31—C30—C34—N40128.7 (4)
C25—C26—C27—C220.6 (7)O34—C34—N40—C401.1 (6)
C23—C22—C27—C260.1 (6)C30—C34—N40—C40178.8 (3)
C21—C22—C27—C26179.6 (4)C34—N40—C40—C4172.1 (4)
N20—C20—C28—O2851.7 (4)N40—C40—C41—O4126.2 (6)
C21—C20—C28—O2867.2 (3)N40—C40—C41—O42156.3 (3)
N20—C20—C28—N30129.8 (3)O41—C41—O42—C420.5 (6)
C21—C20—C28—N30111.3 (3)C40—C41—O42—C42178.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N40—H40···O140.862.273.097 (4)162
O1—H1···O410.872.213.080 (7)174
O1—H2···O140.842.012.843 (6)171
N20—H20···O28i0.862.012.864 (3)174
Symmetry code: (i) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC22H31N3O6·H2O
Mr451.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.0814 (8), 11.6889 (10), 22.685 (2)
V3)2408.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.912, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
28185, 3002, 2771
Rint0.031
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.177, 1.11
No. of reflections3002
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N40—H40···O140.862.273.097 (4)162
O1—H1···O410.872.213.080 (7)174
O1—H2···O140.842.012.843 (6)171
N20—H20···O28i0.862.012.864 (3)174
Symmetry code: (i) x+1/2, y+3/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds