Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C13H18IN4+·Br·2H2O, is a quaternary ammonium salt derived from 2-iodo­benzyl bromide and hexa­methyl­enetetra­mine. Two water mol­ecules per asymmetric unit act as hydrogen-bond donors to the bromide anion. Direct cation–anion contacts are established via C—H donors, mainly from methyl­ene groups in the α position to the ammonium centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807048623/rk2048sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807048623/rk2048Isup2.hkl
Contains datablock I

CCDC reference: 667325

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.061
  • Data-to-parameter ratio = 18.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT420_ALERT_2_B D-H Without Acceptor O1 - H12 ... ?
Alert level C CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. Colourless' CRYSC01_ALERT_1_C No recognised colour has been given for crystal colour. PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H12 .. N3 .. 2.72 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H3 .. I .. 3.31 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5 .. BR .. 3.05 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6 .. N4 .. 2.73 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H72 .. BR .. 2.99 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H82 .. O1 .. 2.78 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H101 .. BR .. 2.97 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H121 .. O1 .. 2.78 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H122 .. BR .. 3.07 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported C3 .. I .. 4.24 Ang.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 13 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the quaternary ammonium salt, hexamethylenetetramine is N–alkylated by an ortho–iodobenzyl moiety. The positive charge of the ammonium centre atom is counterbalanced by a bromide ion (Fig. 1). Intramolecular bond lengths and angles are normal.

The bromide ions are embedded into an environment of 7 hydrogen–bond donors (CIF: the _geom_special_details item for the applied criteria). One hemisphere around the anion contains three O—H donors, the other hemisphere is established by four C—H···Br contacts. Of these, three bonds have methylene functions as donors which are in α–position to the quaternary ammonium centre (Fig. 1), the fourth stemming from a phenyl–CH. The O2 donors are part of OH2Br2H2O rhombs (Fig. 2). All the water molecules are close to the boundary planes of the chosen unit cell. There are no hydrogen–bonded contacts between water molecules. Instead, the acceptor functions of the O atoms are occupied by C—H donors. Again, there is a predominance of α–methylene donors. The acceptor capability of the amine–N atoms is less pronounced than that of the anion and the water–O atoms. There are relatively long bonds from water (N3) and phenyl–CH donors (N4), whereas N2 is not found as an acceptor within the applied criteria.

Related literature top

For synthesis of the title compound, see Angyal et al. (1949). For the crystal structure of a related compound, see Shao et al. (1982).

Experimental top

The title compound was obtained as an intermediate in the synthesis of ortho–iodomandelic acid according to a published procedure (Angyal et al., 1949) upon addition of ortho–iodobenzyl bromide to a solution of hexamethylenetetramine in chloroform. Crystals suitable for X–ray analysis were obtained upon the cooling of a saturated aqueous solution to 277 K.

Refinement top

The H atoms on C atoms were located in a difference map and refined as riding on their parent atoms with a common Uiso value. The H atoms on the water molecules were located in a difference map and refined with a common O—H distance and a constant 105° bond angle. A common Uiso value was refined for the O–bonded H atoms. Position of the residual peak - deepest hole, -1.07 e Å-3 at 0.3169 0.8397 0.5303 with the distance 0.82 Å from I.

Structure description top

In the quaternary ammonium salt, hexamethylenetetramine is N–alkylated by an ortho–iodobenzyl moiety. The positive charge of the ammonium centre atom is counterbalanced by a bromide ion (Fig. 1). Intramolecular bond lengths and angles are normal.

The bromide ions are embedded into an environment of 7 hydrogen–bond donors (CIF: the _geom_special_details item for the applied criteria). One hemisphere around the anion contains three O—H donors, the other hemisphere is established by four C—H···Br contacts. Of these, three bonds have methylene functions as donors which are in α–position to the quaternary ammonium centre (Fig. 1), the fourth stemming from a phenyl–CH. The O2 donors are part of OH2Br2H2O rhombs (Fig. 2). All the water molecules are close to the boundary planes of the chosen unit cell. There are no hydrogen–bonded contacts between water molecules. Instead, the acceptor functions of the O atoms are occupied by C—H donors. Again, there is a predominance of α–methylene donors. The acceptor capability of the amine–N atoms is less pronounced than that of the anion and the water–O atoms. There are relatively long bonds from water (N3) and phenyl–CH donors (N4), whereas N2 is not found as an acceptor within the applied criteria.

For synthesis of the title compound, see Angyal et al. (1949). For the crystal structure of a related compound, see Shao et al. (1982).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms are presented as a spheres of arbitrary radius. Hydrogen bonds are indicated as dashed lines.
[Figure 2] Fig. 2. The packing of title compound, viewed along [0 1 0]. Some of the hydrogen bonds with water donors are drawn as dashed lines.
N-(2-Iodophenylmethyl)hexamethylenetetraminium bromide dihydrate top
Crystal data top
C13H18IN4+·Br·2H2OV = 819.8 (8) Å3
Mr = 473.15Z = 2
Triclinic, P1F(000) = 464
Hall symbol: -P 1Dx = 1.917 Mg m3
a = 9.084 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.500 (5) Åθ = 3.8–27.5°
c = 10.495 (7) ŵ = 4.40 mm1
α = 69.28 (5)°T = 200 K
β = 75.47 (5)°Block, colourless'
γ = 83.76 (4)°0.28 × 0.15 × 0.14 mm
Data collection top
Nonius KappaCCD
diffractometer
3820 independent reflections
Radiation source: Fine-focus sealed tube2865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.6°, θmin = 3.8°
Absorption correction: numerical
[crystal faces optimized with X-SHAPE (Stoe & Cie, 1997) and absorption correction with X-RED (Stoe & Cie, 1997)]
h = 1111
Tmin = 0.409, Tmax = 0.610k = 1212
10405 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0335P)2]
where P = (Fo2 + 2Fc2)/3
3820 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.50 e Å3
6 restraintsΔρmin = 1.07 e Å3
Crystal data top
C13H18IN4+·Br·2H2Oγ = 83.76 (4)°
Mr = 473.15V = 819.8 (8) Å3
Triclinic, P1Z = 2
a = 9.084 (4) ÅMo Kα radiation
b = 9.500 (5) ŵ = 4.40 mm1
c = 10.495 (7) ÅT = 200 K
α = 69.28 (5)°0.28 × 0.15 × 0.14 mm
β = 75.47 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3820 independent reflections
Absorption correction: numerical
[crystal faces optimized with X-SHAPE (Stoe & Cie, 1997) and absorption correction with X-RED (Stoe & Cie, 1997)]
2865 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.610Rint = 0.032
10405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0266 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.50 e Å3
3820 reflectionsΔρmin = 1.07 e Å3
205 parameters
Special details top

Geometry. The hydrogen–bond list was generated with the PLATON command "hbond 1.. 4 140", i.e., D···A is less than the sum of the vdW radii + 1 Å, H···A is less than the sum of the vdW radii + 0.4 Å, the D—H···A angle is greater than 140°.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.33565 (2)0.89354 (2)0.44815 (2)0.03398 (8)
Br0.09573 (4)0.28677 (3)0.33816 (3)0.03467 (9)
O10.2401 (3)0.2543 (4)0.0283 (3)0.0676 (9)
H110.199 (4)0.258 (5)0.101 (3)0.063 (7)*
H120.177 (3)0.274 (5)0.013 (4)0.063 (7)*
O20.0335 (3)0.0367 (3)0.6679 (3)0.0435 (6)
H210.037 (5)0.088 (4)0.590 (3)0.063 (7)*
H220.001 (4)0.038 (3)0.672 (4)0.063 (7)*
N10.2986 (2)0.7033 (2)0.1572 (2)0.0182 (5)
N20.3446 (3)0.9209 (3)0.0563 (3)0.0279 (5)
N30.1101 (3)0.7836 (3)0.0132 (3)0.0250 (5)
N40.3522 (3)0.6716 (3)0.0710 (2)0.0268 (5)
C10.4668 (3)0.6402 (3)0.3306 (3)0.0206 (6)
C20.5020 (3)0.7436 (3)0.3847 (3)0.0216 (6)
C30.6450 (3)0.7475 (3)0.4062 (3)0.0265 (6)
H30.66660.81940.44270.0245 (18)*
C40.7556 (3)0.6472 (4)0.3748 (3)0.0289 (7)
H40.85460.65110.38800.0245 (18)*
C50.7247 (3)0.5399 (3)0.3240 (3)0.0275 (6)
H50.80140.46960.30360.0245 (18)*
C60.5811 (3)0.5368 (3)0.3035 (3)0.0244 (6)
H60.55940.46230.27020.0245 (18)*
C70.3114 (3)0.6314 (3)0.3075 (3)0.0220 (6)
H710.23640.68080.36550.0245 (18)*
H720.28440.52410.34040.0245 (18)*
C80.3672 (3)0.8595 (3)0.0848 (3)0.0242 (6)
H810.31810.92670.13770.0245 (18)*
H820.47730.85250.08240.0245 (18)*
C90.1816 (3)0.9313 (3)0.0520 (3)0.0299 (7)
H910.16640.97740.14850.0245 (18)*
H920.13120.99790.00130.0245 (18)*
C100.1299 (3)0.7186 (3)0.1554 (3)0.0217 (6)
H1010.08330.61810.20010.0245 (18)*
H1020.07750.78330.20990.0245 (18)*
C110.1891 (3)0.6848 (3)0.0663 (3)0.0275 (6)
H1110.14440.58360.02180.0245 (18)*
H1120.17360.72640.16290.0245 (18)*
C120.3752 (3)0.6060 (3)0.0696 (3)0.0230 (6)
H1210.48550.59650.06660.0245 (18)*
H1220.33230.50390.11340.0245 (18)*
C130.4181 (3)0.8223 (3)0.1354 (3)0.0307 (7)
H1310.52840.81370.13830.0245 (18)*
H1320.40530.86690.23270.0245 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.02658 (11)0.03900 (13)0.04832 (15)0.00253 (8)0.00951 (9)0.02950 (11)
Br0.03848 (18)0.02750 (17)0.0393 (2)0.00699 (13)0.01011 (14)0.01016 (14)
O10.0583 (19)0.099 (3)0.053 (2)0.0062 (18)0.0106 (14)0.0341 (19)
O20.0603 (16)0.0328 (13)0.0465 (16)0.0065 (12)0.0284 (14)0.0117 (12)
N10.0171 (11)0.0205 (11)0.0178 (12)0.0020 (9)0.0049 (9)0.0062 (9)
N20.0337 (14)0.0234 (13)0.0271 (14)0.0051 (11)0.0131 (11)0.0036 (11)
N30.0250 (12)0.0236 (12)0.0328 (14)0.0027 (10)0.0137 (11)0.0132 (11)
N40.0303 (13)0.0309 (14)0.0244 (13)0.0048 (11)0.0106 (11)0.0141 (11)
C10.0197 (13)0.0240 (14)0.0157 (14)0.0038 (11)0.0027 (11)0.0039 (11)
C20.0194 (13)0.0235 (14)0.0219 (15)0.0032 (11)0.0028 (11)0.0083 (12)
C30.0235 (14)0.0319 (16)0.0268 (16)0.0071 (12)0.0045 (12)0.0124 (13)
C40.0192 (14)0.0404 (17)0.0244 (16)0.0029 (13)0.0054 (12)0.0066 (13)
C50.0277 (15)0.0308 (16)0.0217 (16)0.0086 (13)0.0065 (12)0.0082 (13)
C60.0313 (15)0.0227 (14)0.0217 (15)0.0006 (12)0.0073 (12)0.0100 (12)
C70.0231 (14)0.0263 (14)0.0182 (14)0.0067 (11)0.0057 (11)0.0073 (12)
C80.0302 (15)0.0172 (13)0.0273 (16)0.0069 (12)0.0096 (12)0.0063 (12)
C90.0378 (17)0.0227 (15)0.0321 (18)0.0041 (13)0.0164 (14)0.0085 (13)
C100.0172 (13)0.0216 (14)0.0301 (16)0.0003 (11)0.0070 (11)0.0124 (12)
C110.0326 (16)0.0302 (16)0.0275 (16)0.0027 (13)0.0135 (13)0.0157 (13)
C120.0264 (14)0.0239 (15)0.0227 (15)0.0062 (12)0.0066 (12)0.0141 (12)
C130.0287 (15)0.0400 (18)0.0196 (16)0.0036 (13)0.0053 (12)0.0050 (13)
Geometric parameters (Å, º) top
I—C22.111 (3)C3—C41.369 (4)
O1—H110.78 (2)C3—H30.9500
O1—H120.78 (2)C4—C51.387 (4)
O2—H210.78 (2)C4—H40.9500
O2—H220.78 (2)C5—C61.379 (4)
N1—C71.510 (3)C5—H50.9500
N1—C121.525 (3)C6—H60.9500
N1—C81.527 (4)C7—H710.9900
N1—C101.528 (3)C7—H720.9900
N2—C81.446 (4)C8—H810.9900
N2—C91.464 (4)C8—H820.9900
N2—C131.466 (4)C9—H910.9900
N3—C101.449 (4)C9—H920.9900
N3—C91.468 (4)C10—H1010.9900
N3—C111.483 (3)C10—H1020.9900
N4—C121.444 (4)C11—H1110.9900
N4—C111.463 (4)C11—H1120.9900
N4—C131.470 (4)C12—H1210.9900
C1—C21.393 (4)C12—H1220.9900
C1—C61.397 (4)C13—H1310.9900
C1—C71.507 (4)C13—H1320.9900
C2—C31.380 (4)
H11—O1—H12105 (2)N1—C7—H72108.7
H21—O2—H22103 (2)H71—C7—H72107.6
C7—N1—C12111.5 (2)N2—C8—N1109.7 (2)
C7—N1—C8113.9 (2)N2—C8—H81109.7
C12—N1—C8107.5 (2)N1—C8—H81109.7
C7—N1—C10108.0 (2)N2—C8—H82109.7
C12—N1—C10107.67 (19)N1—C8—H82109.7
C8—N1—C10108.0 (2)H81—C8—H82108.2
C8—N2—C9109.4 (2)N2—C9—N3112.2 (2)
C8—N2—C13109.9 (2)N2—C9—H91109.2
C9—N2—C13108.7 (2)N3—C9—H91109.2
C10—N3—C9108.8 (2)N2—C9—H92109.2
C10—N3—C11108.6 (2)N3—C9—H92109.2
C9—N3—C11108.3 (2)H91—C9—H92107.9
C12—N4—C11109.4 (2)N3—C10—N1110.7 (2)
C12—N4—C13109.0 (2)N3—C10—H101109.5
C11—N4—C13109.3 (2)N1—C10—H101109.5
C2—C1—C6117.2 (2)N3—C10—H102109.5
C2—C1—C7123.1 (2)N1—C10—H102109.5
C6—C1—C7119.7 (2)H101—C10—H102108.1
C3—C2—C1121.6 (2)N4—C11—N3111.5 (2)
C3—C2—I116.74 (19)N4—C11—H111109.3
C1—C2—I121.55 (19)N3—C11—H111109.3
C4—C3—C2119.7 (3)N4—C11—H112109.3
C4—C3—H3120.2N3—C11—H112109.3
C2—C3—H3120.2H111—C11—H112108.0
C3—C4—C5120.7 (3)N4—C12—N1110.6 (2)
C3—C4—H4119.6N4—C12—H121109.5
C5—C4—H4119.6N1—C12—H121109.5
C6—C5—C4119.0 (3)N4—C12—H122109.5
C6—C5—H5120.5N1—C12—H122109.5
C4—C5—H5120.5H121—C12—H122108.1
C5—C6—C1121.7 (2)N2—C13—N4111.0 (2)
C5—C6—H6119.1N2—C13—H131109.4
C1—C6—H6119.1N4—C13—H131109.4
C1—C7—N1114.4 (2)N2—C13—H132109.4
C1—C7—H71108.7N4—C13—H132109.4
N1—C7—H71108.7H131—C13—H132108.0
C1—C7—H72108.7
C6—C1—C2—C32.2 (4)C13—N2—C9—N358.9 (3)
C7—C1—C2—C3179.2 (2)C10—N3—C9—N260.1 (3)
C6—C1—C2—I174.31 (19)C11—N3—C9—N257.7 (3)
C7—C1—C2—I2.6 (4)C9—N3—C10—N158.4 (3)
C1—C2—C3—C40.4 (4)C11—N3—C10—N159.3 (3)
I—C2—C3—C4176.3 (2)C7—N1—C10—N3178.5 (2)
C2—C3—C4—C51.2 (4)C12—N1—C10—N357.9 (3)
C3—C4—C5—C60.9 (4)C8—N1—C10—N357.9 (3)
C4—C5—C6—C11.0 (4)C12—N4—C11—N361.0 (3)
C2—C1—C6—C52.5 (4)C13—N4—C11—N358.2 (3)
C7—C1—C6—C5179.6 (3)C10—N3—C11—N460.8 (3)
C2—C1—C7—N1101.8 (3)C9—N3—C11—N457.2 (3)
C6—C1—C7—N181.3 (3)C11—N4—C12—N159.5 (3)
C12—N1—C7—C175.0 (3)C13—N4—C12—N159.9 (3)
C8—N1—C7—C146.9 (3)C7—N1—C12—N4175.9 (2)
C10—N1—C7—C1166.8 (2)C8—N1—C12—N458.6 (3)
C9—N2—C8—N159.6 (3)C10—N1—C12—N457.6 (3)
C13—N2—C8—N159.8 (3)C8—N2—C13—N461.1 (3)
C7—N1—C8—N2178.0 (2)C9—N2—C13—N458.7 (3)
C12—N1—C8—N257.9 (3)C12—N4—C13—N260.6 (3)
C10—N1—C8—N258.0 (3)C11—N4—C13—N258.9 (3)
C8—N2—C9—N361.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···Br0.77 (3)2.53 (3)3.297 (4)172 (3)
O1—H12···N3i0.77 (3)2.72 (3)3.390 (5)146 (4)
O2—H21···Br0.78 (3)2.61 (3)3.381 (4)168 (4)
O2—H22···Brii0.79 (3)2.65 (3)3.433 (4)174 (3)
C3—H3···Iiii0.953.314.237 (4)166
C5—H5···Briv0.953.053.924 (4)153
C6—H6···N4v0.952.733.558 (5)146
C7—H72···Br0.992.993.872 (4)149
C8—H82···O1v0.992.783.640 (5)145
C9—H91···O2vi0.992.403.326 (5)156
C10—H101···Br0.992.973.875 (4)153
C10—H102···O2vii0.992.473.459 (5)174
C12—H121···O1v0.992.783.643 (5)146
C12—H122···Br0.993.073.952 (4)149
C13—H131···O1v0.992.563.481 (5)154
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z1; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H18IN4+·Br·2H2O
Mr473.15
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.084 (4), 9.500 (5), 10.495 (7)
α, β, γ (°)69.28 (5), 75.47 (5), 83.76 (4)
V3)819.8 (8)
Z2
Radiation typeMo Kα
µ (mm1)4.40
Crystal size (mm)0.28 × 0.15 × 0.14
Data collection
DiffractometerNonius KappaCCD
Absorption correctionNumerical
[crystal faces optimized with X-SHAPE (Stoe & Cie, 1997) and absorption correction with X-RED (Stoe & Cie, 1997)]
Tmin, Tmax0.409, 0.610
No. of measured, independent and
observed [I > 2σ(I)] reflections
10405, 3820, 2865
Rint0.032
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 0.95
No. of reflections3820
No. of parameters205
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 1.07

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···Br0.77 (3)2.53 (3)3.297 (4)172 (3)
O1—H12···N3i0.77 (3)2.72 (3)3.390 (5)146 (4)
O2—H21···Br0.78 (3)2.61 (3)3.381 (4)168 (4)
O2—H22···Brii0.79 (3)2.65 (3)3.433 (4)174 (3)
C3—H3···Iiii0.953.314.237 (4)166
C5—H5···Briv0.953.053.924 (4)153
C6—H6···N4v0.952.733.558 (5)146
C7—H72···Br0.992.993.872 (4)149
C8—H82···O1v0.992.783.640 (5)145
C9—H91···O2vi0.992.403.326 (5)156
C10—H101···Br0.992.973.875 (4)153
C10—H102···O2vii0.992.473.459 (5)174
C12—H121···O1v0.992.783.643 (5)146
C12—H122···Br0.993.073.952 (4)149
C13—H131···O1v0.992.563.481 (5)154
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z1; (vii) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds