Download citation
Download citation
link to html
The title compound, C24H22N2O4, forms weak inter- and intra­molecular N—H...O hydrogen bonds. Additional inter­molecular C—H...O inter­actions give rise to a three-dimensional network in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031820/rk2022sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031820/rk2022Isup2.hkl
Contains datablock I

CCDC reference: 658979

Key indicators

  • Single-crystal X-ray study
  • T = 130 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.044
  • wR factor = 0.118
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C22 .. 6.37 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In continuation of studies on the hydrogen bonding pattern in pyrroles (Senge & Smith, 2005), dipyrromethanes (Senge, 2005) and porphyrins (Senge, 2000) the title compound was investigated for N–H···O and C–H···O interactions using the criteria put forward by Steiner (1997).

The structure is characterized by an intramolecular hydrogen bond between the pyrrole hydrogen and O1 from the phthalimido group [N1–H1···O1, 2.506 (17) Å, 119.1 (15)°]. The pyrrole hydrogen atom is also involved in intermolecular hydrogen bond, which is formed with the carbonyl oxygen atom (O2) of the phthalimido group not involved in the intramolecular hydrogen bond [N1–H1···O2, 2.520 (19) Å, 137.8 (15)°]. As indicated by their bond lenghts, both hydrogen bonds are relatively weak. The phthalimido group also participates in C–H···O interactions. Atom O1 is in close contact with an aromatic C–H unit [C27–H27···O1 = 2.30 (2) Å], while O2 is in close contact to an aliphatic CH2-group [C52–H52···O2 = 2.40 (2) Å]. The benzylic ester group is only involved in a contact to another aromatic C–H unit [C24–H24···O3 = 2.48 (2) Å]. Thus, arrangement of the molecules in the crystal is dominated by intermolecular contacts involving the phthalimido groups. These arrange in parallel layers with the benzylester groups forming an outer rim of this ladder-type arrangement.

Related literature top

For related literature, see: Senge (2000, 2005); Senge & Smith (2005). The compound was prepared as described by Terry et al. (1965) and Kenner et al. (1977); crystals were handled as described by Hope (1994). The hydrogen-bonding analysis followed the criteria set out by Steiner (1997).

Experimental top

Crystals were handled as described by Hope (1994). The compound was prepared as described by Terry et al. (1965) and Kenner et al. (1977) and was crystallized from CH2Cl2/n-hexane.

Refinement top

H atoms were mostly placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances in the range of 0.95–1.00 Å and Uiso (H) = 1.2 Ueq (C) for CH– and CH2-groups and Uiso (H) = 1.5 Ueq (C) for methyl groups. The pyrrole hydrogen atom was refined with isotropic thermal parameters.

Structure description top

In continuation of studies on the hydrogen bonding pattern in pyrroles (Senge & Smith, 2005), dipyrromethanes (Senge, 2005) and porphyrins (Senge, 2000) the title compound was investigated for N–H···O and C–H···O interactions using the criteria put forward by Steiner (1997).

The structure is characterized by an intramolecular hydrogen bond between the pyrrole hydrogen and O1 from the phthalimido group [N1–H1···O1, 2.506 (17) Å, 119.1 (15)°]. The pyrrole hydrogen atom is also involved in intermolecular hydrogen bond, which is formed with the carbonyl oxygen atom (O2) of the phthalimido group not involved in the intramolecular hydrogen bond [N1–H1···O2, 2.520 (19) Å, 137.8 (15)°]. As indicated by their bond lenghts, both hydrogen bonds are relatively weak. The phthalimido group also participates in C–H···O interactions. Atom O1 is in close contact with an aromatic C–H unit [C27–H27···O1 = 2.30 (2) Å], while O2 is in close contact to an aliphatic CH2-group [C52–H52···O2 = 2.40 (2) Å]. The benzylic ester group is only involved in a contact to another aromatic C–H unit [C24–H24···O3 = 2.48 (2) Å]. Thus, arrangement of the molecules in the crystal is dominated by intermolecular contacts involving the phthalimido groups. These arrange in parallel layers with the benzylester groups forming an outer rim of this ladder-type arrangement.

For related literature, see: Senge (2000, 2005); Senge & Smith (2005). The compound was prepared as described by Terry et al. (1965) and Kenner et al. (1977); crystals were handled as described by Hope (1994). The hydrogen-bonding analysis followed the criteria set out by Steiner (1997).

Computing details top

Data collection: P3/PC (Siemens, 1995a); cell refinement: P3/PC; data reduction: XDISK (Siemens, 1995b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1995b); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure and numbering scheme of title compound. Displacement ellipsoids for the non-hydrogen atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the molecular arrangement in the crystal (down b axis). Dashed lines indicate indicate intermolecular C–H···O and N–H···O contacts.
Benzyl 4-ethyl-3-methyl-5-(phthalimidomethyl)pyrrole-2-carboxylate top
Crystal data top
C24H22N2O4F(000) = 848
Mr = 402.44Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 33 reflections
a = 19.322 (6) Åθ = 19–23°
b = 7.482 (4) ŵ = 0.09 mm1
c = 14.104 (3) ÅT = 130 K
β = 98.27 (2)°Block, colorless
V = 2017.8 (13) Å30.50 × 0.44 × 0.40 mm
Z = 4
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.037
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.1°
Graphite monochromatorh = 2524
ω scansk = 09
5193 measured reflectionsl = 018
4631 independent reflections2 standard reflections every 198 reflections
3592 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.3895P]
where P = (Fo2 + 2Fc2)/3
4631 reflections(Δ/σ)max = 0.002
277 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H22N2O4V = 2017.8 (13) Å3
Mr = 402.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.322 (6) ŵ = 0.09 mm1
b = 7.482 (4) ÅT = 130 K
c = 14.104 (3) Å0.50 × 0.44 × 0.40 mm
β = 98.27 (2)°
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.037
5193 measured reflections2 standard reflections every 198 reflections
4631 independent reflections intensity decay: none
3592 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.27 e Å3
4631 reflectionsΔρmin = 0.22 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30261 (6)0.37224 (17)0.56068 (8)0.0268 (3)
H10.3356 (9)0.439 (3)0.5864 (13)0.042 (5)*
C20.28084 (7)0.21436 (19)0.59395 (10)0.0278 (3)
C30.22269 (7)0.15625 (19)0.53190 (10)0.0279 (3)
C40.20900 (7)0.28679 (19)0.45834 (10)0.0267 (3)
C50.25936 (7)0.41963 (19)0.47815 (10)0.0261 (3)
N20.38371 (6)0.04176 (16)0.66530 (8)0.0278 (3)
C210.31864 (7)0.1282 (2)0.68238 (10)0.0308 (3)
H21A0.32940.22000.73290.037*
H21B0.28770.03800.70590.037*
C220.44372 (7)0.1384 (2)0.65426 (9)0.0274 (3)
C230.49587 (7)0.00499 (19)0.63188 (9)0.0261 (3)
C240.56346 (7)0.0286 (2)0.61316 (10)0.0314 (3)
H240.58460.14340.61570.038*
C250.59925 (7)0.1239 (2)0.59037 (11)0.0347 (3)
H250.64590.11290.57730.042*
C260.56792 (8)0.2915 (2)0.58645 (11)0.0336 (3)
H260.59340.39270.57010.040*
C270.49967 (8)0.3138 (2)0.60609 (10)0.0305 (3)
H270.47820.42820.60380.037*
C280.46492 (7)0.16269 (19)0.62892 (9)0.0255 (3)
C290.39265 (7)0.14212 (19)0.65286 (10)0.0266 (3)
O10.44822 (6)0.29938 (14)0.66130 (7)0.0349 (3)
O20.34920 (5)0.25493 (15)0.66160 (8)0.0352 (3)
C310.18076 (8)0.0095 (2)0.54301 (11)0.0333 (3)
H31A0.21020.09520.58440.040*
H31B0.16820.06590.47940.040*
C320.11410 (9)0.0258 (3)0.58610 (14)0.0481 (4)
H32A0.12610.08070.64940.072*
H32B0.08960.08730.59240.072*
H32C0.08380.10680.54420.072*
C410.15170 (8)0.2780 (2)0.37443 (11)0.0352 (3)
H41A0.12660.39220.36800.053*
H41B0.11910.18200.38460.053*
H41C0.17200.25410.31590.053*
C510.27361 (7)0.5849 (2)0.43034 (10)0.0274 (3)
C520.22978 (7)0.7991 (2)0.31376 (10)0.0289 (3)
H52A0.26690.78760.27260.035*
H52B0.24350.89410.36160.035*
C530.16146 (7)0.84587 (19)0.25394 (10)0.0265 (3)
C540.09744 (7)0.8122 (2)0.28520 (11)0.0327 (3)
H540.09630.75230.34430.039*
C550.03544 (8)0.8655 (2)0.23054 (12)0.0396 (4)
H550.00800.84230.25230.047*
C560.03679 (9)0.9526 (2)0.14419 (13)0.0433 (4)
H560.00560.99000.10690.052*
C570.09977 (9)0.9850 (2)0.11242 (12)0.0407 (4)
H570.10061.04400.05290.049*
C580.16192 (8)0.9320 (2)0.16687 (11)0.0318 (3)
H580.20510.95480.14440.038*
O30.32659 (5)0.67202 (16)0.44929 (8)0.0395 (3)
O40.22085 (5)0.63129 (14)0.36163 (7)0.0312 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0231 (6)0.0301 (6)0.0275 (6)0.0005 (5)0.0049 (5)0.0009 (5)
C20.0278 (7)0.0286 (7)0.0284 (7)0.0044 (6)0.0094 (5)0.0017 (6)
C30.0277 (7)0.0272 (7)0.0299 (7)0.0033 (6)0.0078 (5)0.0012 (6)
C40.0255 (6)0.0267 (7)0.0286 (7)0.0027 (5)0.0062 (5)0.0014 (6)
C50.0232 (6)0.0287 (7)0.0274 (7)0.0030 (5)0.0062 (5)0.0009 (6)
N20.0267 (6)0.0274 (6)0.0290 (6)0.0006 (5)0.0034 (5)0.0037 (5)
C210.0318 (7)0.0352 (8)0.0265 (7)0.0049 (6)0.0081 (6)0.0032 (6)
C220.0318 (7)0.0287 (7)0.0205 (6)0.0024 (6)0.0003 (5)0.0046 (5)
C230.0267 (7)0.0283 (7)0.0221 (6)0.0020 (5)0.0001 (5)0.0036 (5)
C240.0292 (7)0.0352 (8)0.0289 (7)0.0073 (6)0.0010 (6)0.0044 (6)
C250.0240 (7)0.0480 (9)0.0320 (7)0.0011 (6)0.0039 (6)0.0046 (7)
C260.0324 (7)0.0374 (9)0.0310 (7)0.0076 (6)0.0048 (6)0.0028 (6)
C270.0339 (7)0.0282 (7)0.0295 (7)0.0005 (6)0.0047 (6)0.0023 (6)
C280.0258 (6)0.0272 (7)0.0231 (6)0.0022 (5)0.0018 (5)0.0053 (5)
C290.0274 (7)0.0287 (7)0.0236 (6)0.0009 (6)0.0029 (5)0.0034 (5)
O10.0457 (6)0.0233 (5)0.0349 (6)0.0034 (4)0.0031 (5)0.0017 (4)
O20.0331 (5)0.0338 (6)0.0406 (6)0.0086 (5)0.0116 (5)0.0004 (5)
C310.0373 (8)0.0264 (8)0.0362 (8)0.0001 (6)0.0056 (6)0.0016 (6)
C320.0444 (10)0.0386 (10)0.0652 (12)0.0061 (8)0.0209 (9)0.0044 (9)
C410.0363 (8)0.0313 (8)0.0355 (8)0.0032 (6)0.0030 (6)0.0001 (6)
C510.0251 (6)0.0312 (8)0.0267 (7)0.0016 (6)0.0069 (5)0.0002 (6)
C520.0281 (7)0.0280 (7)0.0314 (7)0.0037 (6)0.0072 (6)0.0039 (6)
C530.0294 (7)0.0219 (7)0.0292 (7)0.0010 (5)0.0074 (5)0.0012 (5)
C540.0312 (7)0.0357 (8)0.0324 (7)0.0006 (6)0.0089 (6)0.0035 (6)
C550.0278 (7)0.0466 (10)0.0450 (9)0.0006 (7)0.0077 (6)0.0003 (8)
C560.0367 (8)0.0424 (10)0.0479 (9)0.0064 (7)0.0035 (7)0.0073 (8)
C570.0473 (9)0.0357 (9)0.0378 (8)0.0018 (7)0.0020 (7)0.0125 (7)
C580.0347 (7)0.0286 (8)0.0331 (7)0.0038 (6)0.0088 (6)0.0035 (6)
O30.0293 (5)0.0459 (7)0.0421 (6)0.0093 (5)0.0011 (5)0.0114 (5)
O40.0287 (5)0.0280 (5)0.0355 (5)0.0026 (4)0.0002 (4)0.0060 (4)
Geometric parameters (Å, º) top
N1—C21.3599 (19)C29—O21.2093 (17)
N1—C51.3781 (18)C31—C321.524 (2)
N1—H10.851 (18)C31—H31A0.9900
C2—C31.391 (2)C31—H31B0.9900
C2—C211.498 (2)C32—H32A0.9800
C3—C41.422 (2)C32—H32B0.9800
C3—C311.502 (2)C32—H32C0.9800
C4—C51.391 (2)C41—H41A0.9800
C4—C411.501 (2)C41—H41B0.9800
C5—C511.453 (2)C41—H41C0.9800
N2—C221.3942 (18)C51—O31.2107 (17)
N2—C291.401 (2)C51—O41.3471 (17)
N2—C211.4643 (18)C52—O41.4475 (18)
C21—H21A0.9900C52—C531.502 (2)
C21—H21B0.9900C52—H52A0.9900
C22—O11.2106 (19)C52—H52B0.9900
C22—C231.484 (2)C53—C581.388 (2)
C23—C241.380 (2)C53—C541.395 (2)
C23—C281.388 (2)C54—C551.387 (2)
C24—C251.395 (2)C54—H540.9500
C24—H240.9500C55—C561.385 (2)
C25—C261.390 (2)C55—H550.9500
C25—H250.9500C56—C571.377 (2)
C26—C271.396 (2)C56—H560.9500
C26—H260.9500C57—C581.387 (2)
C27—C281.376 (2)C57—H570.9500
C27—H270.9500C58—H580.9500
C28—C291.4910 (19)
C2—N1—C5109.57 (12)N2—C29—C28105.44 (11)
C2—N1—H1127.9 (12)C3—C31—C32113.44 (13)
C5—N1—H1122.4 (13)C3—C31—H31A108.9
N1—C2—C3108.45 (12)C32—C31—H31A108.9
N1—C2—C21121.55 (13)C3—C31—H31B108.9
C3—C2—C21129.98 (14)C32—C31—H31B108.9
C2—C3—C4107.04 (13)H31A—C31—H31B107.7
C2—C3—C31126.27 (13)C31—C32—H32A109.5
C4—C3—C31126.64 (13)C31—C32—H32B109.5
C5—C4—C3107.04 (13)H32A—C32—H32B109.5
C5—C4—C41127.23 (13)C31—C32—H32C109.5
C3—C4—C41125.72 (13)H32A—C32—H32C109.5
N1—C5—C4107.91 (13)H32B—C32—H32C109.5
N1—C5—C51118.59 (12)C4—C41—H41A109.5
C4—C5—C51133.50 (13)C4—C41—H41B109.5
C22—N2—C29112.07 (12)H41A—C41—H41B109.5
C22—N2—C21122.48 (13)C4—C41—H41C109.5
C29—N2—C21125.36 (12)H41A—C41—H41C109.5
N2—C21—C2112.37 (11)H41B—C41—H41C109.5
N2—C21—H21A109.1O3—C51—O4123.25 (13)
C2—C21—H21A109.1O3—C51—C5124.48 (13)
N2—C21—H21B109.1O4—C51—C5112.26 (12)
C2—C21—H21B109.1O4—C52—C53108.05 (11)
H21A—C21—H21B107.9O4—C52—H52A110.1
O1—C22—N2123.91 (14)C53—C52—H52A110.1
O1—C22—C23130.06 (14)O4—C52—H52B110.1
N2—C22—C23106.02 (12)C53—C52—H52B110.1
C24—C23—C28121.69 (14)H52A—C52—H52B108.4
C24—C23—C22130.13 (14)C58—C53—C54118.85 (13)
C28—C23—C22108.15 (12)C58—C53—C52119.22 (13)
C23—C24—C25116.95 (14)C54—C53—C52121.87 (13)
C23—C24—H24121.5C55—C54—C53120.45 (14)
C25—C24—H24121.5C55—C54—H54119.8
C26—C25—C24121.29 (14)C53—C54—H54119.8
C26—C25—H25119.4C56—C55—C54120.01 (15)
C24—C25—H25119.4C56—C55—H55120.0
C25—C26—C27121.21 (15)C54—C55—H55120.0
C25—C26—H26119.4C57—C56—C55119.88 (15)
C27—C26—H26119.4C57—C56—H56120.1
C28—C27—C26117.06 (14)C55—C56—H56120.1
C28—C27—H27121.5C56—C57—C58120.30 (15)
C26—C27—H27121.5C56—C57—H57119.9
C27—C28—C23121.79 (13)C58—C57—H57119.9
C27—C28—C29129.94 (13)C57—C58—C53120.50 (14)
C23—C28—C29108.27 (12)C57—C58—H58119.8
O2—C29—N2124.94 (13)C53—C58—H58119.8
O2—C29—C28129.62 (14)C51—O4—C52115.49 (11)
C5—N1—C2—C30.47 (15)C26—C27—C28—C230.4 (2)
C5—N1—C2—C21179.14 (12)C26—C27—C28—C29179.78 (13)
N1—C2—C3—C40.34 (15)C24—C23—C28—C270.8 (2)
C21—C2—C3—C4178.86 (13)C22—C23—C28—C27177.52 (12)
N1—C2—C3—C31178.12 (13)C24—C23—C28—C29179.70 (12)
C21—C2—C3—C313.4 (2)C22—C23—C28—C292.01 (14)
C2—C3—C4—C50.08 (15)C22—N2—C29—O2177.65 (13)
C31—C3—C4—C5177.86 (13)C21—N2—C29—O25.7 (2)
C2—C3—C4—C41178.76 (13)C22—N2—C29—C281.69 (15)
C31—C3—C4—C413.5 (2)C21—N2—C29—C28174.93 (11)
C2—N1—C5—C40.42 (15)C27—C28—C29—O23.5 (2)
C2—N1—C5—C51179.78 (12)C23—C28—C29—O2177.01 (14)
C3—C4—C5—N10.20 (15)C27—C28—C29—N2177.20 (14)
C41—C4—C5—N1178.45 (13)C23—C28—C29—N22.28 (15)
C3—C4—C5—C51179.43 (14)C2—C3—C31—C3298.71 (18)
C41—C4—C5—C510.8 (3)C4—C3—C31—C3278.65 (19)
C22—N2—C21—C274.63 (17)N1—C5—C51—O311.4 (2)
C29—N2—C21—C2101.66 (16)C4—C5—C51—O3167.77 (15)
N1—C2—C21—N276.22 (17)N1—C5—C51—O4168.68 (12)
C3—C2—C21—N2102.13 (17)C4—C5—C51—O412.2 (2)
C29—N2—C22—O1179.62 (13)O4—C52—C53—C58145.08 (13)
C21—N2—C22—O12.9 (2)O4—C52—C53—C5437.72 (18)
C29—N2—C22—C230.50 (15)C58—C53—C54—C550.6 (2)
C21—N2—C22—C23176.23 (11)C52—C53—C54—C55176.57 (15)
O1—C22—C23—C240.0 (2)C53—C54—C55—C560.1 (3)
N2—C22—C23—C24179.09 (13)C54—C55—C56—C570.5 (3)
O1—C22—C23—C28178.05 (14)C55—C56—C57—C580.5 (3)
N2—C22—C23—C280.99 (14)C56—C57—C58—C530.1 (3)
C28—C23—C24—C250.5 (2)C54—C53—C58—C570.6 (2)
C22—C23—C24—C25177.42 (13)C52—C53—C58—C57176.68 (14)
C23—C24—C25—C260.2 (2)O3—C51—O4—C522.8 (2)
C24—C25—C26—C270.6 (2)C5—C51—O4—C52177.22 (11)
C25—C26—C27—C280.3 (2)C53—C52—O4—C51169.44 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.851 (18)2.506 (17)3.0130 (18)119.1 (15)
N1—H1···O2i0.851 (18)2.520 (19)3.201 (2)137.8 (15)
C24—H24···O3ii0.952.483.293 (2)144
C27—H27···O1iii0.952.303.193 (2)157
C41—H41A···O40.982.562.979 (2)106
C52—H52A···O2iv0.992.403.3857 (19)175
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H22N2O4
Mr402.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)19.322 (6), 7.482 (4), 14.104 (3)
β (°) 98.27 (2)
V3)2017.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.44 × 0.40
Data collection
DiffractometerSiemens R3m/V
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5193, 4631, 3592
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.01
No. of reflections4631
No. of parameters277
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: P3/PC (Siemens, 1995a), P3/PC, XDISK (Siemens, 1995b), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1995b), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.851 (18)2.506 (17)3.0130 (18)119.1 (15)
N1—H1···O2i0.851 (18)2.520 (19)3.201 (2)137.8 (15)
C24—H24···O3ii0.952.483.293 (2)143.9
C27—H27···O1iii0.952.303.193 (2)156.7
C41—H41A···O40.982.562.979 (2)105.5
C52—H52A···O2iv0.992.403.3857 (19)175.1
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds