Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
1,5-Diphenylpenta-2,4-dien-1-one (DDO) chalcone single crystals, synthesized by a base-catalysed aldol condensation reaction between cinnamaldehyde and acetophenone, have been grown by the slow evaporation of an ethanol solution. The crystals belong to the orthorhombic system with centrosymmetric space group Pbca. The DDO crystals are transparent in the visible region and have a lower optical cut-off at ∼445 nm with a band-gap energy of 2.87 eV. Thermogravimetry/differential scanning calorimetry thermal analysis shows that the crystal is stable up to 375 K and it has a good chemical stability. The vibrational patterns of the chalcone have been investigated by Fourier transform IR and Fourier transform Raman spectroscopy. Microhardness studies were also carried out to elucidate the mechanical behaviour. Theoretical calculations were performed using the Hartree–Fock method with 6-31G(d,p) as the basis set, and the first-order hyperpolarizability is 7.077 × 10−30 electrostatic units, which is >25 times that of urea. The crystalline perfection evaluated by high-resolution X-ray diffraction analysis reveals multiple peaks. The molecular packing leads to a centrosymmetric arrangement, resulting in zero second harmonic generation [χ(2) = 0] efficiency. Interestingly, the bromo- and chloro-substituted chalcones are good nonlinear optical materials.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889812030403/rg5013sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889812030403/rg5013Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0021889812030403/rg5013sup3.pdf
X-ray diffraction data of DDO

CCDC reference: 856740

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altornare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(I) top
Crystal data top
C17H14ODx = 1.197 Mg m3
Mr = 234.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2996 reflections
a = 15.4307 (9) Åθ = 2.5–23.1°
b = 10.2659 (5) ŵ = 0.07 mm1
c = 16.4124 (9) ÅT = 293 K
V = 2599.9 (2) Å3Block, colourless
Z = 80.30 × 0.20 × 0.20 mm
F(000) = 992
Data collection top
Bruker axs kappa apex2 CCD Diffractometer2041 independent reflections
Radiation source: fine-focus sealed tube1430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scanθmax = 24.1°, θmin = 2.5°
Absorption correction: multi-scan
SADABS (Bruker, 1999)
h = 1317
Tmin = 0.961, Tmax = 0.992k = 1111
11155 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.062P)2 + 0.4186P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2041 reflectionsΔρmax = 0.31 e Å3
164 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (8)
Crystal data top
C17H14OV = 2599.9 (2) Å3
Mr = 234.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.4307 (9) ŵ = 0.07 mm1
b = 10.2659 (5) ÅT = 293 K
c = 16.4124 (9) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker axs kappa apex2 CCD Diffractometer2041 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 1999)
1430 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.992Rint = 0.025
11155 measured reflectionsθmax = 24.1°
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
2041 reflectionsΔρmin = 0.12 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65266 (13)0.14890 (19)0.61284 (12)0.0630 (5)
H10.65420.05890.61930.076*
C20.69425 (14)0.2049 (2)0.54790 (13)0.0757 (6)
H20.72380.15290.51080.091*
C30.69250 (14)0.3374 (2)0.53742 (13)0.0772 (7)
H30.72010.37520.49290.093*
C40.64976 (14)0.4139 (2)0.59307 (13)0.0722 (6)
H40.64930.50390.58660.087*
C50.60759 (12)0.35819 (17)0.65836 (11)0.0581 (5)
H50.57840.41080.69550.070*
C60.60837 (11)0.22454 (16)0.66904 (10)0.0488 (5)
C70.56664 (12)0.15942 (16)0.74004 (11)0.0548 (5)
C80.52131 (12)0.23788 (17)0.80105 (11)0.0580 (5)
H80.50390.32170.78710.070*
C90.50403 (12)0.19458 (18)0.87556 (11)0.0572 (5)
H90.52180.11040.88820.069*
C100.46067 (12)0.26582 (17)0.93781 (11)0.0583 (5)
H100.44400.35080.92600.070*
C110.44226 (12)0.21989 (18)1.01173 (11)0.0592 (5)
H110.46080.13561.02280.071*
C120.39641 (11)0.28646 (18)1.07716 (10)0.0542 (5)
C130.38653 (13)0.42074 (19)1.07965 (11)0.0633 (6)
H130.41220.47171.03950.076*
C140.33945 (15)0.4797 (2)1.14036 (13)0.0748 (6)
H140.33310.56981.14070.090*
C150.30184 (15)0.4064 (2)1.20029 (13)0.0801 (7)
H150.26930.44621.24090.096*
C160.31232 (15)0.2744 (2)1.20010 (13)0.0802 (7)
H160.28730.22451.24110.096*
C170.35956 (14)0.2149 (2)1.13985 (11)0.0687 (6)
H170.36700.12511.14110.082*
O10.57175 (11)0.04065 (12)0.74720 (8)0.0832 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0654 (14)0.0573 (11)0.0663 (12)0.0012 (10)0.0040 (10)0.0042 (9)
C20.0732 (15)0.0849 (15)0.0689 (13)0.0057 (12)0.0193 (12)0.0076 (11)
C30.0649 (15)0.0946 (17)0.0720 (14)0.0033 (13)0.0172 (11)0.0164 (12)
C40.0711 (15)0.0625 (12)0.0830 (14)0.0038 (11)0.0126 (12)0.0156 (11)
C50.0599 (13)0.0535 (11)0.0608 (11)0.0000 (9)0.0062 (10)0.0003 (8)
C60.0462 (11)0.0502 (10)0.0500 (10)0.0015 (8)0.0035 (8)0.0006 (8)
C70.0582 (12)0.0478 (10)0.0584 (11)0.0011 (9)0.0024 (9)0.0025 (8)
C80.0630 (13)0.0505 (10)0.0605 (12)0.0026 (9)0.0051 (10)0.0045 (9)
C90.0596 (13)0.0544 (10)0.0575 (11)0.0029 (9)0.0014 (10)0.0038 (9)
C100.0601 (12)0.0545 (10)0.0601 (11)0.0021 (9)0.0012 (10)0.0032 (9)
C110.0580 (13)0.0641 (11)0.0554 (11)0.0060 (9)0.0024 (10)0.0031 (9)
C120.0479 (11)0.0645 (11)0.0502 (10)0.0009 (9)0.0073 (9)0.0008 (9)
C130.0614 (13)0.0689 (13)0.0595 (12)0.0100 (10)0.0010 (10)0.0046 (9)
C140.0771 (16)0.0704 (13)0.0770 (14)0.0064 (11)0.0002 (12)0.0184 (11)
C150.0726 (16)0.0987 (17)0.0689 (14)0.0072 (13)0.0082 (12)0.0234 (12)
C160.0808 (17)0.0996 (18)0.0601 (13)0.0126 (14)0.0123 (12)0.0007 (12)
C170.0769 (15)0.0701 (12)0.0592 (12)0.0017 (11)0.0032 (11)0.0063 (10)
O10.1140 (13)0.0524 (8)0.0832 (10)0.0011 (8)0.0189 (9)0.0061 (7)
Geometric parameters (Å, º) top
C1—C21.371 (3)C9—H90.9300
C1—C61.386 (2)C10—C111.332 (2)
C1—H10.9300C10—H100.9300
C2—C31.371 (3)C11—C121.456 (2)
C2—H20.9300C11—H110.9300
C3—C41.373 (3)C12—C171.386 (3)
C3—H30.9300C12—C131.388 (3)
C4—C51.378 (3)C13—C141.374 (3)
C4—H40.9300C13—H130.9300
C5—C61.383 (2)C14—C151.368 (3)
C5—H50.9300C14—H140.9300
C6—C71.490 (2)C15—C161.364 (3)
C7—O11.2275 (19)C15—H150.9300
C7—C81.463 (2)C16—C171.372 (3)
C8—C91.328 (2)C16—H160.9300
C8—H80.9300C17—H170.9300
C9—C101.423 (2)
C2—C1—C6120.88 (18)C10—C9—H9117.2
C2—C1—H1119.6C11—C10—C9124.89 (17)
C6—C1—H1119.6C11—C10—H10117.6
C1—C2—C3120.3 (2)C9—C10—H10117.6
C1—C2—H2119.8C10—C11—C12127.52 (18)
C3—C2—H2119.8C10—C11—H11116.2
C2—C3—C4119.54 (19)C12—C11—H11116.2
C2—C3—H3120.2C17—C12—C13117.35 (18)
C4—C3—H3120.2C17—C12—C11119.88 (18)
C3—C4—C5120.48 (19)C13—C12—C11122.77 (17)
C3—C4—H4119.8C14—C13—C12121.16 (19)
C5—C4—H4119.8C14—C13—H13119.4
C4—C5—C6120.39 (18)C12—C13—H13119.4
C4—C5—H5119.8C15—C14—C13120.2 (2)
C6—C5—H5119.8C15—C14—H14119.9
C5—C6—C1118.40 (17)C13—C14—H14119.9
C5—C6—C7122.72 (16)C16—C15—C14119.6 (2)
C1—C6—C7118.83 (16)C16—C15—H15120.2
O1—C7—C8120.80 (16)C14—C15—H15120.2
O1—C7—C6119.53 (16)C15—C16—C17120.5 (2)
C8—C7—C6119.66 (14)C15—C16—H16119.8
C9—C8—C7122.81 (16)C17—C16—H16119.8
C9—C8—H8118.6C16—C17—C12121.1 (2)
C7—C8—H8118.6C16—C17—H17119.4
C8—C9—C10125.68 (17)C12—C17—H17119.4
C8—C9—H9117.2
C6—C1—C2—C30.1 (3)C7—C8—C9—C10179.67 (17)
C1—C2—C3—C40.9 (4)C8—C9—C10—C11178.5 (2)
C2—C3—C4—C51.1 (3)C9—C10—C11—C12178.39 (18)
C3—C4—C5—C60.5 (3)C10—C11—C12—C17160.3 (2)
C4—C5—C6—C10.2 (3)C10—C11—C12—C1318.9 (3)
C4—C5—C6—C7177.74 (17)C17—C12—C13—C142.2 (3)
C2—C1—C6—C50.4 (3)C11—C12—C13—C14176.97 (18)
C2—C1—C6—C7178.03 (18)C12—C13—C14—C150.6 (3)
C5—C6—C7—O1177.93 (18)C13—C14—C15—C160.9 (3)
C1—C6—C7—O10.4 (3)C14—C15—C16—C170.6 (4)
C5—C6—C7—C81.1 (3)C15—C16—C17—C121.1 (3)
C1—C6—C7—C8178.58 (16)C13—C12—C17—C162.5 (3)
O1—C7—C8—C918.4 (3)C11—C12—C17—C16176.72 (18)
C6—C7—C8—C9160.63 (18)

Experimental details

Crystal data
Chemical formulaC17H14O
Mr234.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.4307 (9), 10.2659 (5), 16.4124 (9)
V3)2599.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker axs kappa apex2 CCD Diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 1999)
Tmin, Tmax0.961, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
11155, 2041, 1430
Rint0.025
θmax (°)24.1
(sin θ/λ)max1)0.574
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.130, 1.07
No. of reflections2041
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.12

Computer programs: APEX2 (Bruker, 2004), APEX2/SAINT (Bruker, 2004), SAINT/XPREP (Bruker, 2004), SIR92 (Altornare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002).

 

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds