Download citation
Download citation
link to html
The novel title compound, C25H31O6P, contains rigid fused rings which are shown to be similar to the precursor structures. Weak C-H...O inter­molecular inter­actions produce two-dimensional sheets composed of R44(28) rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106038522/rb3020sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106038522/rb3020Isup2.hkl
Contains datablock I

CCDC reference: 628519

Comment top

This study is part of a programme aimed at generating new hydrogenation catalyst ligands (Gainsford et al., 2005). No monophosphinite ligands based on isopropylideneinositols have been reported previously.

The asymmetric unit of the title compound, (I), contains one independent 1-D-3-(diphenylphosphino)-1,2:5,6-di-O-isopropylidene-4-O-methyl-chiro-inositol molecule (Fig. 1). The chemically determined absolute configuration (S, R, R and S for C2, C3, C4 and C5, respectively) was confirmed by the refinement. There are two reported di-O-isopropylidene-chiro-inositol structures [Cambridge Structural Database (CSD; Allen, 2002); another D enantiomer (CSD refcode HOFLOD; Falshaw et al., 1999) and a substituted L entantiomer (IPRTIN; McConnell et al., 1972)]. Two other isoprolylidene myo-inositols structures, PINMII (Chung et al., 1994) and NAGZOL (Sureshan et al., 2004), are known, while another 1-D-1,2:5:6-di-O-isopropylidene-4-methyl-chiro-inositol, hereafter (II), has also been resolved by us (Falshaw et al., 2006).

The P—O bond length (Table 1) is similar to that found in two diphenylphosphinite ephedrine compounds [DERLEQ and DERKIU; 1.666 (6) and 1.640 (2) Å; Brunet et al., 1999], while the P—O—C angle is larger than that of the closest ring analogue (MUKREP; Nazarov et al., 2002), which has a P—O—C angle of 117.24 (10)° and a P—O distance of 1.6617 (12) Å. The torsion angles involving the Ph2PO link [e.g. C14—P1—O3—C3 = −124.59 (12)°] are also similar to those of the latter compound [−129.40 (11)°]. Other dimensions are normal.

The inositol ring adopts a twist-boat conformation with Q = 0.6739 (17) Å, θ = 93.86 (15)° and ϕ = 340.19 (15)° (Cremer & Pople, 1975). This is quite different from the skew-boat found for the tosylated (L) derivative (IPRTIN). The two isopropylidene rings have slightly different conformations; C1/O1/C7/O2/C2 is best described as an envelope on C2, while the puckered C5/O5/C10/O6/C6 adopts a twisted form on C10—O5 (Evans & Boeyens, 1989). Comparison with (II) and HOFLOD shows that the 5,6-di-O-isopropylidene-chiro-inositol ring structure is quite rigid with only some minor changes in the interplanar angles of the average mean planes through the rings and the twist about O1—C1 (Table 3).

The packing is stabilized mainly by two weak C—H···O interactions described according to Bernstein et al. (1995) (see Table 2), viz. entry 1, which forms a C(6) chain running parallel to the a axis, and entry 2, which forms a C(10) chain running parallel to the c axis, generated by the screw axis at (3/4, 1/2, z). Together these interactions form two-dimensional sheets composed of R44(28) rings (Fig. 2). One weak C—H···π interaction provides a possible interaction in the third dimension (entry 3, Table 2, where Cg1 is the centroid of the phenyl ring atoms C20–C25). Other weaker intra- and intermolecular interactions (entries 4–6) are listed for completeness.

Experimental top

A solution of Ph2PCl (468 mg, 2.12 mmol) in tetrahydrofuran (5 ml) was added dropwise to a magnetically stirred solution of 1-D-3-O-methyl-1,2:5,6-O-isopropylidene-chiro-inositol (582 mg, 2.12 mmol) and pyridine (0.32 g, 4 mmol) dissolved in tetrahydrofuran (10 ml) at room temperature. The reaction mixture was stirred for 1 h at room temperature. The solvent was removed under high vacuum. Toluene (10 ml) was added and the mixture filtered through neutral alumina. Removal of the solvents under high vacuum yielded (I) (0.84 g, 1.83 mmol, 87%) as a white solid. [α]D = +12.2°(c 1/2, CHCl3). Analysis calculated for C25H31O6P: C 65.49, H 6.82%; found: C 66.06, H 6.78%.

Refinement top

All H atoms were constrained to their expected geometries (C—H = 0.95, 0.98 and 1.0 Å) and refined with Uiso(H) values of 1.2Ueq of their parent atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The main intermolecular packing interactions in (I), viewed down the b axis. Only H atoms and labels of one set of atoms in the the R44(28) rings are shown (see text). Symmetry designations are as in Table 2.
1D-3-(Diphenylphosphino)-1,2:5,6-di-O-isopropylidene-4-O-methyl-chiro-inositol top
Crystal data top
C25H31O6PF(000) = 976
Mr = 458.47Dx = 1.238 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8226 reflections
a = 5.7381 (5) Åθ = 2.3–22.5°
b = 19.5148 (16) ŵ = 0.15 mm1
c = 21.9735 (18) ÅT = 166 K
V = 2460.5 (4) Å3Needle, colourless
Z = 40.81 × 0.25 × 0.12 mm
Data collection top
Siemens P4 CCD area-detector
diffractometer
5014 independent reflections
Radiation source: fine-focus sealed tube3486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.192 pixels mm-1θmax = 26.4°, θmin = 1.9°
ϕ and ω scansh = 37
Absorption correction: multi-scan
(Blessing, 1995)
k = 2424
Tmin = 0.743, Tmax = 0.979l = 2727
31585 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0293P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max = 0.001
5014 reflectionsΔρmax = 0.19 e Å3
294 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 2109 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (7)
Crystal data top
C25H31O6PV = 2460.5 (4) Å3
Mr = 458.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7381 (5) ŵ = 0.15 mm1
b = 19.5148 (16) ÅT = 166 K
c = 21.9735 (18) Å0.81 × 0.25 × 0.12 mm
Data collection top
Siemens P4 CCD area-detector
diffractometer
5014 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3486 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.979Rint = 0.049
31585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.19 e Å3
S = 0.87Δρmin = 0.25 e Å3
5014 reflectionsAbsolute structure: Flack (1983), 2109 Friedel pairs
294 parametersAbsolute structure parameter: 0.06 (7)
0 restraints
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 1.0 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P11.19157 (8)0.39609 (2)0.34708 (2)0.02716 (12)
O10.48207 (19)0.42809 (6)0.55032 (5)0.0329 (3)
O20.76527 (19)0.36592 (6)0.50148 (5)0.0309 (3)
O30.95934 (19)0.43317 (6)0.37715 (5)0.0292 (3)
O41.2004 (2)0.54672 (6)0.41831 (5)0.0378 (3)
O50.8992 (2)0.62220 (6)0.51530 (6)0.0466 (4)
O60.6738 (3)0.56835 (7)0.58258 (7)0.0740 (5)
C10.6152 (3)0.47463 (8)0.51400 (7)0.0272 (4)
H10.50740.50710.49280.033*
C20.7282 (3)0.42758 (8)0.46724 (7)0.0236 (4)
H20.61510.41830.43360.028*
C30.9571 (3)0.45218 (8)0.44034 (7)0.0238 (4)
H31.08970.42940.46180.029*
C40.9824 (3)0.52964 (8)0.44541 (7)0.0283 (4)
H40.85400.55230.42210.034*
C50.9715 (3)0.55235 (8)0.51178 (8)0.0312 (4)
H51.12900.54740.53080.037*
C60.7905 (3)0.51494 (8)0.55080 (7)0.0340 (5)
H60.87070.48400.58040.041*
C70.5768 (3)0.35928 (9)0.54339 (8)0.0280 (4)
C80.3869 (3)0.31366 (9)0.51884 (8)0.0334 (5)
H8A0.34300.32900.47790.040*
H8B0.25070.31600.54570.040*
H8C0.44330.26630.51690.040*
C90.6748 (4)0.33430 (10)0.60320 (8)0.0426 (5)
H9A0.74720.28930.59740.051*
H9B0.54890.33050.63310.051*
H9C0.79200.36680.61790.051*
C100.7840 (4)0.63150 (9)0.57212 (9)0.0422 (5)
C110.9502 (4)0.64793 (12)0.62296 (10)0.0726 (8)
H11A0.86410.65110.66140.087*
H11B1.02720.69180.61460.087*
H11C1.06780.61170.62600.087*
C120.6001 (5)0.68586 (13)0.56399 (12)0.0948 (10)
H12A0.49240.67200.53160.114*
H12B0.67460.72930.55290.114*
H12C0.51380.69160.60210.114*
C131.2134 (5)0.61290 (11)0.39445 (12)0.0847 (9)
H13A1.09500.61850.36270.102*
H13B1.36840.62040.37700.102*
H13C1.18580.64630.42700.102*
C141.2537 (3)0.45410 (8)0.28376 (7)0.0269 (4)
C151.0963 (3)0.46542 (9)0.23665 (8)0.0326 (5)
H150.95430.44040.23570.039*
C161.1437 (3)0.51273 (9)0.19096 (8)0.0387 (5)
H161.03420.52040.15930.046*
C171.3503 (4)0.54825 (9)0.19213 (8)0.0403 (5)
H171.38310.58080.16110.048*
C181.5097 (4)0.53726 (10)0.23760 (9)0.0448 (5)
H181.65230.56200.23790.054*
C191.4624 (3)0.48964 (9)0.28354 (9)0.0376 (5)
H191.57400.48170.31470.045*
C201.0411 (3)0.32695 (9)0.30656 (7)0.0278 (4)
C211.1526 (3)0.29412 (9)0.25831 (8)0.0358 (5)
H211.29900.31050.24440.043*
C221.0508 (4)0.23752 (10)0.23049 (9)0.0481 (6)
H221.12870.21540.19780.058*
C230.8384 (4)0.21333 (10)0.24998 (9)0.0482 (6)
H230.76950.17470.23080.058*
C240.7259 (4)0.24553 (10)0.29751 (9)0.0450 (5)
H240.57900.22910.31110.054*
C250.8273 (3)0.30208 (9)0.32560 (8)0.0356 (5)
H250.74860.32390.35830.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0267 (2)0.0313 (3)0.0234 (2)0.0034 (2)0.0010 (2)0.0014 (2)
O10.0364 (7)0.0264 (7)0.0359 (8)0.0029 (6)0.0140 (6)0.0044 (6)
O20.0314 (7)0.0236 (7)0.0377 (7)0.0024 (5)0.0078 (6)0.0023 (6)
O30.0280 (7)0.0388 (8)0.0207 (7)0.0046 (6)0.0008 (6)0.0009 (6)
O40.0350 (7)0.0360 (8)0.0425 (7)0.0038 (7)0.0067 (7)0.0098 (6)
O50.0649 (10)0.0220 (7)0.0529 (9)0.0018 (7)0.0181 (8)0.0041 (6)
O60.0949 (12)0.0474 (10)0.0798 (11)0.0350 (10)0.0539 (10)0.0384 (9)
C10.0289 (10)0.0241 (10)0.0285 (10)0.0028 (9)0.0035 (8)0.0035 (8)
C20.0247 (10)0.0238 (9)0.0223 (9)0.0022 (8)0.0048 (8)0.0012 (8)
C30.0247 (10)0.0285 (10)0.0181 (9)0.0037 (8)0.0020 (8)0.0007 (8)
C40.0246 (10)0.0271 (11)0.0333 (11)0.0019 (9)0.0004 (9)0.0053 (8)
C50.0312 (10)0.0258 (10)0.0366 (11)0.0022 (9)0.0021 (9)0.0044 (9)
C60.0474 (12)0.0266 (10)0.0279 (10)0.0036 (10)0.0041 (10)0.0055 (8)
C70.0297 (10)0.0257 (11)0.0287 (11)0.0004 (9)0.0039 (9)0.0014 (8)
C80.0308 (11)0.0295 (11)0.0399 (11)0.0004 (9)0.0016 (9)0.0014 (9)
C90.0498 (13)0.0412 (12)0.0368 (12)0.0115 (11)0.0054 (11)0.0072 (9)
C100.0440 (12)0.0295 (12)0.0532 (13)0.0019 (11)0.0085 (11)0.0143 (10)
C110.0729 (17)0.0705 (18)0.0743 (17)0.0014 (15)0.0027 (15)0.0349 (14)
C120.100 (2)0.081 (2)0.104 (2)0.0426 (17)0.0091 (18)0.0379 (17)
C130.0898 (19)0.0525 (16)0.112 (2)0.0014 (15)0.0489 (17)0.0412 (14)
C140.0270 (11)0.0298 (10)0.0238 (9)0.0038 (8)0.0032 (8)0.0017 (8)
C150.0319 (11)0.0315 (11)0.0345 (11)0.0071 (9)0.0026 (9)0.0035 (9)
C160.0476 (14)0.0363 (12)0.0322 (11)0.0015 (11)0.0052 (10)0.0063 (9)
C170.0479 (14)0.0340 (12)0.0389 (12)0.0062 (11)0.0159 (11)0.0088 (10)
C180.0340 (12)0.0441 (13)0.0562 (14)0.0092 (11)0.0125 (11)0.0037 (11)
C190.0296 (11)0.0451 (13)0.0379 (11)0.0029 (10)0.0002 (10)0.0027 (10)
C200.0346 (11)0.0262 (10)0.0225 (10)0.0036 (9)0.0025 (9)0.0039 (8)
C210.0414 (12)0.0360 (12)0.0299 (10)0.0002 (10)0.0057 (10)0.0024 (9)
C220.0734 (16)0.0418 (13)0.0290 (12)0.0014 (13)0.0013 (12)0.0056 (10)
C230.0691 (17)0.0368 (13)0.0387 (12)0.0114 (13)0.0133 (13)0.0023 (10)
C240.0416 (13)0.0415 (13)0.0520 (13)0.0105 (11)0.0083 (11)0.0096 (11)
C250.0356 (11)0.0330 (11)0.0383 (11)0.0013 (10)0.0005 (10)0.0030 (9)
Geometric parameters (Å, º) top
P1—O31.6541 (12)C10—C111.504 (3)
P1—C141.8286 (17)C10—C121.507 (3)
P1—C201.8329 (18)C11—H11A0.9800
O1—C11.4299 (18)C11—H11B0.9800
O1—C71.4567 (19)C11—H11C0.9800
O2—C71.4265 (19)C12—H12A0.9800
O2—C21.4350 (18)C12—H12B0.9800
O3—C31.4372 (18)C12—H12C0.9800
O4—C131.396 (2)C13—H13A0.9800
O4—C41.425 (2)C13—H13B0.9800
O5—C101.425 (2)C13—H13C0.9800
O5—C51.4269 (19)C14—C191.384 (2)
O6—C101.404 (2)C14—C151.391 (2)
O6—C61.422 (2)C15—C161.391 (2)
C1—C61.512 (2)C15—H150.9500
C1—C21.523 (2)C16—C171.373 (2)
C1—H11.0000C16—H160.9500
C2—C31.518 (2)C17—C181.371 (3)
C2—H21.0000C17—H170.9500
C3—C41.523 (2)C18—C191.399 (2)
C3—H31.0000C18—H180.9500
C4—C51.526 (2)C19—H190.9500
C4—H41.0000C20—C251.384 (2)
C5—C61.532 (2)C20—C211.394 (2)
C5—H51.0000C21—C221.391 (2)
C6—H61.0000C21—H210.9500
C7—C81.507 (2)C22—C231.376 (3)
C7—C91.510 (2)C22—H220.9500
C8—H8A0.9800C23—C241.379 (3)
C8—H8B0.9800C23—H230.9500
C8—H8C0.9800C24—C251.392 (2)
C9—H9A0.9800C24—H240.9500
C9—H9B0.9800C25—H250.9500
C9—H9C0.9800
O3—P1—C14100.97 (7)H9B—C9—H9C109.5
O3—P1—C2097.85 (7)O6—C10—O5103.92 (13)
C14—P1—C20100.25 (8)O6—C10—C11110.56 (18)
C1—O1—C7109.14 (11)O5—C10—C11112.56 (17)
C7—O2—C2107.60 (11)O6—C10—C12108.80 (18)
C3—O3—P1120.41 (10)O5—C10—C12108.12 (18)
C13—O4—C4114.84 (15)C11—C10—C12112.47 (17)
C10—O5—C5107.71 (13)C10—C11—H11A109.5
C10—O6—C6110.55 (14)C10—C11—H11B109.5
O1—C1—C6112.80 (13)H11A—C11—H11B109.5
O1—C1—C2102.78 (12)C10—C11—H11C109.5
C6—C1—C2113.03 (14)H11A—C11—H11C109.5
O1—C1—H1109.3H11B—C11—H11C109.5
C6—C1—H1109.3C10—C12—H12A109.5
C2—C1—H1109.3C10—C12—H12B109.5
O2—C2—C3109.95 (12)H12A—C12—H12B109.5
O2—C2—C1102.40 (12)C10—C12—H12C109.5
C3—C2—C1116.14 (14)H12A—C12—H12C109.5
O2—C2—H2109.4H12B—C12—H12C109.5
C3—C2—H2109.4O4—C13—H13A109.5
C1—C2—H2109.4O4—C13—H13B109.5
O3—C3—C2107.60 (13)H13A—C13—H13B109.5
O3—C3—C4109.03 (13)O4—C13—H13C109.5
C2—C3—C4111.60 (14)H13A—C13—H13C109.5
O3—C3—H3109.5H13B—C13—H13C109.5
C2—C3—H3109.5C19—C14—C15118.64 (16)
C4—C3—H3109.5C19—C14—P1118.79 (13)
O4—C4—C3106.59 (13)C15—C14—P1122.54 (13)
O4—C4—C5111.58 (14)C16—C15—C14121.05 (17)
C3—C4—C5110.76 (14)C16—C15—H15119.5
O4—C4—H4109.3C14—C15—H15119.5
C3—C4—H4109.3C17—C16—C15119.35 (18)
C5—C4—H4109.3C17—C16—H16120.3
O5—C5—C4109.96 (14)C15—C16—H16120.3
O5—C5—C6103.17 (13)C18—C17—C16120.70 (18)
C4—C5—C6115.12 (14)C18—C17—H17119.7
O5—C5—H5109.5C16—C17—H17119.7
C4—C5—H5109.5C17—C18—C19120.02 (18)
C6—C5—H5109.5C17—C18—H18120.0
O6—C6—C1109.32 (15)C19—C18—H18120.0
O6—C6—C5104.17 (13)C14—C19—C18120.23 (18)
C1—C6—C5113.57 (13)C14—C19—H19119.9
O6—C6—H6109.9C18—C19—H19119.9
C1—C6—H6109.9C25—C20—C21118.40 (17)
C5—C6—H6109.9C25—C20—P1121.93 (14)
O2—C7—O1105.46 (12)C21—C20—P1119.43 (14)
O2—C7—C8111.77 (13)C22—C21—C20120.42 (19)
O1—C7—C8108.19 (13)C22—C21—H21119.8
O2—C7—C9107.98 (14)C20—C21—H21119.8
O1—C7—C9110.22 (14)C23—C22—C21120.5 (2)
C8—C7—C9112.97 (15)C23—C22—H22119.7
C7—C8—H8A109.5C21—C22—H22119.7
C7—C8—H8B109.5C22—C23—C24119.60 (19)
H8A—C8—H8B109.5C22—C23—H23120.2
C7—C8—H8C109.5C24—C23—H23120.2
H8A—C8—H8C109.5C23—C24—C25120.10 (19)
H8B—C8—H8C109.5C23—C24—H24119.9
C7—C9—H9A109.5C25—C24—H24119.9
C7—C9—H9B109.5C20—C25—C24120.95 (18)
H9A—C9—H9B109.5C20—C25—H25119.5
C7—C9—H9C109.5C24—C25—H25119.5
H9A—C9—H9C109.5
C14—P1—O3—C3124.59 (12)C4—C5—C6—C114.1 (2)
C20—P1—O3—C3133.30 (12)C2—O2—C7—O121.61 (15)
C7—O1—C1—C6100.61 (15)C2—O2—C7—C895.73 (15)
C7—O1—C1—C221.43 (16)C2—O2—C7—C9139.44 (13)
C7—O2—C2—C3158.37 (13)C1—O1—C7—O21.05 (16)
C7—O2—C2—C134.34 (15)C1—O1—C7—C8120.77 (14)
O1—C1—C2—O233.59 (15)C1—O1—C7—C9115.26 (15)
C6—C1—C2—O288.30 (15)C6—O6—C10—O524.5 (2)
O1—C1—C2—C3153.39 (13)C6—O6—C10—C1196.48 (19)
C6—C1—C2—C331.50 (19)C6—O6—C10—C12139.53 (18)
P1—O3—C3—C2133.05 (11)C5—O5—C10—O633.38 (19)
P1—O3—C3—C4105.76 (13)C5—O5—C10—C1186.28 (18)
O2—C2—C3—O3101.96 (14)C5—O5—C10—C12148.88 (17)
C1—C2—C3—O3142.41 (14)O3—P1—C14—C19116.78 (14)
O2—C2—C3—C4138.47 (13)C20—P1—C14—C19143.06 (14)
C1—C2—C3—C422.84 (19)O3—P1—C14—C1561.31 (15)
C13—O4—C4—C3153.18 (17)C20—P1—C14—C1538.85 (16)
C13—O4—C4—C585.8 (2)C19—C14—C15—C161.7 (3)
O3—C3—C4—O460.63 (16)P1—C14—C15—C16176.40 (13)
C2—C3—C4—O4179.35 (12)C14—C15—C16—C170.7 (3)
O3—C3—C4—C5177.82 (13)C15—C16—C17—C180.3 (3)
C2—C3—C4—C559.10 (18)C16—C17—C18—C190.2 (3)
C10—O5—C5—C4151.94 (15)C15—C14—C19—C181.8 (3)
C10—O5—C5—C628.65 (17)P1—C14—C19—C18176.41 (14)
O4—C4—C5—O585.32 (17)C17—C18—C19—C140.8 (3)
C3—C4—C5—O5156.11 (13)O3—P1—C20—C2526.30 (15)
O4—C4—C5—C6158.69 (14)C14—P1—C20—C25129.01 (14)
C3—C4—C5—C640.1 (2)O3—P1—C20—C21159.38 (13)
C10—O6—C6—C1128.73 (16)C14—P1—C20—C2156.67 (15)
C10—O6—C6—C57.0 (2)C25—C20—C21—C220.4 (3)
O1—C1—C6—O677.50 (17)P1—C20—C21—C22174.14 (14)
C2—C1—C6—O6166.43 (14)C20—C21—C22—C230.3 (3)
O1—C1—C6—C5166.65 (13)C21—C22—C23—C240.1 (3)
C2—C1—C6—C550.59 (19)C22—C23—C24—C250.1 (3)
O5—C5—C6—O613.12 (18)C21—C20—C25—C240.2 (3)
C4—C5—C6—O6132.92 (16)P1—C20—C25—C24174.16 (13)
O5—C5—C6—C1105.72 (16)C23—C24—C25—C200.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i1.002.533.474 (2)158
C16—H16···O1ii0.952.603.377 (2)139
C9—H9B···Cg1iii0.982.843.573 (2)133
C16—H16···O6ii0.952.703.391 (2)131
C13—H13C···O50.982.593.215 (3)122
C25—H25···O30.952.492.899 (2)106
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1, z1/2; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC25H31O6P
Mr458.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)166
a, b, c (Å)5.7381 (5), 19.5148 (16), 21.9735 (18)
V3)2460.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.81 × 0.25 × 0.12
Data collection
DiffractometerSiemens P4 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.743, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
31585, 5014, 3486
Rint0.049
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.059, 0.87
No. of reflections5014
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25
Absolute structureFlack (1983), 2109 Friedel pairs
Absolute structure parameter0.06 (7)

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
P1—O31.6541 (12)O1—C71.4567 (19)
P1—C141.8286 (17)O3—C31.4372 (18)
P1—C201.8329 (18)O6—C101.404 (2)
O3—P1—C14100.97 (7)C14—P1—C20100.25 (8)
O3—P1—C2097.85 (7)C3—O3—P1120.41 (10)
C14—P1—O3—C3124.59 (12)P1—O3—C3—C2133.05 (11)
C7—O2—C2—C3158.37 (13)O3—C3—C4—O460.63 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i1.002.533.474 (2)158
C16—H16···O1ii0.952.603.377 (2)139
C9—H9B···Cg1iii0.982.843.573 (2)133
C16—H16···O6ii0.952.703.391 (2)131
C13—H13C···O50.982.593.215 (3)122
C25—H25···O30.952.492.899 (2)106
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1, z1/2; (iii) x1/2, y+1/2, z+1.
Torsion and interplanar angles for related structuresa (°) top
Sourcebϕ1ϕ2ϕ3ϕ4A12A23A13
this work158.37 (13)-100.61 (15)151.95 (15)-128.73 (16)14.93 (10)32.01 (10)46.70 (9)
(II)158.8 (2)-110.0 (2)153.8 (2)-129.3 (2)10.06 (15)30.85 (14)40.90 (14)
HOFLODA158.7 (7)-110.7 (8)150.9 (8)-128.0 (8)10.8 (5)28.0 (5)37.2 (5)
HOFLODB154.3 (8)-119.4 (8)150.4 (7)-136.2 (9)9.6 (6)30.1 (5)39.7 (5)
Notes: (a) ϕ1 C7—O2—C2—C3, ϕ2 C7—O1—C1—C6, ϕ3 C10—O5—C5—C4, ϕ4 C10—O6—C6—C1; Anm angles between mean planes (nm) through (1) O1/C1/C2/O2/C7, (2) C6/O6/C10/O5/C5 and (3) C1–C6.

(b) A and B signify two independent molecules.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds