Download citation
Download citation
link to html
This work is devoted to an investigation of elemental composition, crystal structure and thermal expansion of natural oxoborate azoproite from the Tazheran massif (Siberia, Russia) in the temperature range 5–1650 K. Elemental composition was determined by energy-dispersive X-ray spectroscopy (EDX). Its empirical formula based on five oxygen atoms is (Mg1.81Fe2+0.19)∑2.00(Fe3+0.36Ti0.26Mg0.26Al0.12)∑1.00O2(BO3). Local environment, oxidation states and ratio of Fe atoms are determined using Mössbauer spectroscopy and compared with EDX and single-crystal X-ray diffraction (SCXRD) data. A refinement of the crystal structure from SCXRD data collected at 293 K was provided for the first time. The structure could be described both in terms of cation- and anion-centered polyhedra. It is composed of vertex- and edge-sharing metal–oxygen [MO6]n octahedra that form extended zigzag chains along the a axis building up a framework with the [BO3]3− triangles located in its distorted trigonal channels. From the other point of view, there are double chains consisting of oxocentred [OM4]n+ tetrahedra and [OM5]n+ tetragonal pyramids forming six-membered rings with the triangles in its cavities. Four non-equivalent Mn+ sites are occupied by cations as follows: M(1) (2a) and M(2) (2d) – Mg, M(3) (4g) – Mg and Fe2+, M(4) (4h) – Fe3+, Ti4+, Mg and Al3+. According to differential scanning calorimetry, low- and high-temperature powder X-ray diffraction (LT- and HT-XRD) data, Mössbauer spectroscopy and magnetometry data (5 ≤ T ≤ 1650 K), there are no phase transitions obtained in the temperature range investigated. However, some anomalies in temperature dependencies of unit-cell parameters caused by a partial Fe2+ → Fe3+ oxidation are found in the range 873–1173 K. Azoproite melts at a temperature higher than 1600 K. Eigenvalues of the thermal expansion tensor are calculated for the oxoborate and thermal expansion is described in comparison with its crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520622009349/ra5118sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622009349/ra5118Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520622009349/ra5118sup3.pdf
Figs S1-S3 and Tables S1-S6

CCDC reference: 2208887

Computing details top

(I) top
Crystal data top
Al0.1BFe0.45Mg2.15O5Ti0.3F(000) = 362
Mr = 185.3Dx = 3.603 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P -2xab;-2yab;-2zCell parameters from 3926 reflections
a = 9.2460 (14) Åθ = 2.8–35.5°
b = 12.2731 (18) ŵ = 3.13 mm1
c = 3.0092 (5) ÅT = 293 K
V = 341.48 (9) Å3Prism, black
Z = 40.4 × 0.1 × 0.1 mm
Data collection top
Bruker CCD
diffractometer
715 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.040
Graphite monochromatorθmax = 35.8°, θmin = 2.8°
Absorption correction: multi-scan
(Krause et al., 2015)
h = 1514
Tmin = 0.820, Tmax = 0.860k = 1919
5341 measured reflectionsl = 44
872 independent reflections
Refinement top
Refinement on F0 restraints
R[F2 > 2σ(F2)] = 0.05024 constraints
wR(F2) = 0.069Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 2.76(Δ/σ)max = 0.037
872 reflectionsΔρmax = 0.62 e Å3
59 parametersΔρmin = 0.62 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe40.73794 (7)0.38401 (6)0.50.0090 (2)0.4
Ti40.73794 (7)0.38401 (6)0.50.0090 (2)0.3
Al40.73794 (7)0.38401 (6)0.50.0090 (2)0.1
Mg20.500.50.0137 (5)
Mg30.00090 (12)0.28056 (11)00.0162 (4)0.95
Fe3'0.00090 (12)0.28056 (11)00.0162 (4)0.05
Mg40.73794 (7)0.38401 (6)0.50.0090 (2)0.2
Mg10000.0030 (4)
O50.3495 (3)0.2628 (2)0.50.0093 (7)
O30.6248 (3)0.1420 (2)0.50.0097 (7)
O10.8503 (3)0.0423 (2)0.50.0090 (7)
O40.1089 (3)0.1432 (2)00.0101 (7)
O20.3832 (3)0.0757 (2)00.0109 (7)
B10.2735 (4)0.3608 (3)0.50.0082 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe40.0087 (3)0.0092 (3)0.0091 (3)0.0010 (2)00
Ti40.0087 (3)0.0092 (3)0.0091 (3)0.0010 (2)00
Al40.0087 (3)0.0092 (3)0.0091 (3)0.0010 (2)00
Mg20.0124 (9)0.0141 (9)0.0146 (10)0.0013 (6)00
Mg30.0157 (7)0.0155 (7)0.0174 (7)0.0008 (4)00
Fe3'0.0157 (7)0.0155 (7)0.0174 (7)0.0008 (4)00
Mg40.0087 (3)0.0092 (3)0.0091 (3)0.0010 (2)00
Mg10.0044 (8)0.0020 (7)0.0026 (7)0.0001 (4)00
O50.0088 (11)0.0077 (11)0.0114 (12)0.0005 (8)00
O30.0085 (11)0.0098 (12)0.0107 (12)0.0009 (8)00
O10.0083 (11)0.0096 (12)0.0090 (11)0.0002 (8)00
O40.0094 (12)0.0067 (11)0.0141 (13)0.0007 (8)00
O20.0079 (11)0.0103 (12)0.0146 (12)0.0005 (9)00
B10.0070 (16)0.0102 (17)0.0072 (16)0.0024 (12)00
Geometric parameters (Å, º) top
Fe4—O5i2.076 (3)Mg3—O3vii2.117 (2)
Fe4—O1ii2.107 (3)Mg3—O3viii2.117 (2)
Fe4—O4iii1.9491 (17)Mg3—O41.959 (3)
Fe4—O4i1.9491 (17)Mg3—O2vii2.073 (3)
Fe4—O2iii2.0766 (18)Fe3'—O5vii2.1229 (19)
Fe4—O2i2.0766 (18)Fe3'—O5viii2.1229 (19)
Ti4—O5i2.076 (3)Fe3'—O3vii2.117 (2)
Ti4—O1ii2.107 (3)Fe3'—O3viii2.117 (2)
Ti4—O4iii1.9491 (17)Fe3'—O41.959 (3)
Ti4—O4i1.9491 (17)Fe3'—O2vii2.073 (3)
Ti4—O2iii2.0766 (18)Mg4—O5i2.076 (3)
Ti4—O2i2.0766 (18)Mg4—O1ii2.107 (3)
Al4—O5i2.076 (3)Mg4—O4iii1.9491 (17)
Al4—O1ii2.107 (3)Mg4—O4i1.9491 (17)
Al4—O4iii1.9491 (17)Mg4—O2iii2.0766 (18)
Al4—O4i1.9491 (17)Mg4—O2i2.0766 (18)
Al4—O2iii2.0766 (18)Mg1—O1ix2.1093 (17)
Al4—O2i2.0766 (18)Mg1—O1x2.1093 (17)
Mg2—O32.090 (3)Mg1—O1xi2.1093 (17)
Mg2—O3iv2.090 (3)Mg1—O1iv2.1093 (17)
Mg2—O22.0720 (18)Mg1—O42.026 (3)
Mg2—O2v2.0720 (18)Mg1—O4xii2.026 (3)
Mg2—O2iv2.0720 (18)B1—O51.393 (5)
Mg2—O2vi2.0720 (18)B1—O3viii1.375 (5)
Mg3—O5vii2.1229 (19)B1—O1viii1.385 (5)
Mg3—O5viii2.1229 (19)
O5i—Fe4—O1ii172.99 (10)O5vii—Mg3—O3viii166.74 (12)
O5i—Fe4—O4iii98.94 (9)O5vii—Mg3—O496.92 (10)
O5i—Fe4—O4i98.94 (9)O5vii—Mg3—O2vii82.36 (9)
O5i—Fe4—O2iii83.42 (9)O5viii—Mg3—O3vii166.74 (12)
O5i—Fe4—O2i83.42 (9)O5viii—Mg3—O3viii88.03 (7)
O1ii—Fe4—O4iii85.47 (9)O5viii—Mg3—O496.92 (10)
O1ii—Fe4—O4i85.47 (9)O5viii—Mg3—O2vii82.36 (9)
O1ii—Fe4—O2iii91.77 (9)O3vii—Mg3—O3viii90.61 (8)
O1ii—Fe4—O2i91.77 (9)O3vii—Mg3—O496.35 (10)
O4iii—Fe4—O4i101.06 (9)O3vii—Mg3—O2vii84.37 (10)
O4iii—Fe4—O2iii82.96 (8)O3viii—Mg3—O496.35 (10)
O4iii—Fe4—O2i174.90 (9)O3viii—Mg3—O2vii84.37 (10)
O4i—Fe4—O2iii174.90 (9)O4—Mg3—O2vii178.97 (12)
O4i—Fe4—O2i82.96 (8)O5vii—Fe3'—O5viii90.27 (8)
O2iii—Fe4—O2i92.86 (8)O5vii—Fe3'—O3vii88.03 (7)
O5i—Ti4—O1ii172.99 (10)O5vii—Fe3'—O3viii166.74 (12)
O5i—Ti4—O4iii98.94 (9)O5vii—Fe3'—O496.92 (10)
O5i—Ti4—O4i98.94 (9)O5vii—Fe3'—O2vii82.36 (9)
O5i—Ti4—O2iii83.42 (9)O5viii—Fe3'—O3vii166.74 (12)
O5i—Ti4—O2i83.42 (9)O5viii—Fe3'—O3viii88.03 (7)
O1ii—Ti4—O4iii85.47 (9)O5viii—Fe3'—O496.92 (10)
O1ii—Ti4—O4i85.47 (9)O5viii—Fe3'—O2vii82.36 (9)
O1ii—Ti4—O2iii91.77 (9)O3vii—Fe3'—O3viii90.61 (8)
O1ii—Ti4—O2i91.77 (9)O3vii—Fe3'—O496.35 (10)
O4iii—Ti4—O4i101.06 (9)O3vii—Fe3'—O2vii84.37 (10)
O4iii—Ti4—O2iii82.96 (8)O3viii—Fe3'—O496.35 (10)
O4iii—Ti4—O2i174.90 (9)O3viii—Fe3'—O2vii84.37 (10)
O4i—Ti4—O2iii174.90 (9)O4—Fe3'—O2vii178.97 (12)
O4i—Ti4—O2i82.96 (8)O5i—Mg4—O1ii172.99 (10)
O2iii—Ti4—O2i92.86 (8)O5i—Mg4—O4iii98.94 (9)
O5i—Al4—O1ii172.99 (10)O5i—Mg4—O4i98.94 (9)
O5i—Al4—O4iii98.94 (9)O5i—Mg4—O2iii83.42 (9)
O5i—Al4—O4i98.94 (9)O5i—Mg4—O2i83.42 (9)
O5i—Al4—O2iii83.42 (9)O1ii—Mg4—O4iii85.47 (9)
O5i—Al4—O2i83.42 (9)O1ii—Mg4—O4i85.47 (9)
O1ii—Al4—O4iii85.47 (9)O1ii—Mg4—O2iii91.77 (9)
O1ii—Al4—O4i85.47 (9)O1ii—Mg4—O2i91.77 (9)
O1ii—Al4—O2iii91.77 (9)O4iii—Mg4—O4i101.06 (9)
O1ii—Al4—O2i91.77 (9)O4iii—Mg4—O2iii82.96 (8)
O4iii—Al4—O4i101.06 (9)O4iii—Mg4—O2i174.90 (9)
O4iii—Al4—O2iii82.96 (8)O4i—Mg4—O2iii174.90 (9)
O4iii—Al4—O2i174.90 (9)O4i—Mg4—O2i82.96 (8)
O4i—Al4—O2iii174.90 (9)O2iii—Mg4—O2i92.86 (8)
O4i—Al4—O2i82.96 (8)O1ix—Mg1—O1x91.01 (7)
O2iii—Al4—O2i92.86 (8)O1ix—Mg1—O1xi88.99 (7)
O3—Mg2—O3iv180.0 (5)O1ix—Mg1—O1iv180.0 (5)
O3—Mg2—O285.06 (9)O1ix—Mg1—O496.47 (9)
O3—Mg2—O2v85.06 (9)O1ix—Mg1—O4xii83.53 (9)
O3—Mg2—O2iv94.94 (9)O1x—Mg1—O1xi180.0 (5)
O3—Mg2—O2vi94.94 (9)O1x—Mg1—O1iv88.99 (7)
O3iv—Mg2—O294.94 (9)O1x—Mg1—O496.47 (9)
O3iv—Mg2—O2v94.94 (9)O1x—Mg1—O4xii83.53 (9)
O3iv—Mg2—O2iv85.06 (9)O1xi—Mg1—O1iv91.01 (7)
O3iv—Mg2—O2vi85.06 (9)O1xi—Mg1—O483.53 (9)
O2—Mg2—O2v93.13 (7)O1xi—Mg1—O4xii96.47 (9)
O2—Mg2—O2iv86.87 (7)O1iv—Mg1—O483.53 (9)
O2—Mg2—O2vi180.0 (5)O1iv—Mg1—O4xii96.47 (9)
O2v—Mg2—O2iv180.0 (5)O4—Mg1—O4xii180.0 (5)
O2v—Mg2—O2vi86.87 (7)O5—B1—O3viii118.9 (3)
O2iv—Mg2—O2vi93.13 (7)O5—B1—O1viii118.9 (3)
O5vii—Mg3—O5viii90.27 (8)O3viii—B1—O1viii122.3 (3)
O5vii—Mg3—O3vii88.03 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x1/2, y+1/2, z; (viii) x1/2, y+1/2, z+1; (ix) x1, y, z1; (x) x1, y, z; (xi) x+1, y, z1; (xii) x, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds